[1] Tu G Z. A family of new integrable hierarchy and its Hamiltonian structure. Scientia Sinica A, 1988, 12: 1243--1249
[2] Tu G Z. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. J Math Phys, 1989, 30: 330--338
[3] Ma W X. A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction. Chin J Contemp Math, 1992, 13: 79--89
[4] Ma W X. A new involutive system of polynomials and its classical integrable systems. Chin Sci Bulletin, 1990, 351: 1853--1853
[5] Ma W X. New finite dimensional integrable systems by symmetry constraint of the KdV equations. J Phys Soc Japan, 1995, 64: 1085--1091
[6] Fan E G. A family of integrable multi-Hamiltonian systems explicitly related to some celebrated equations. J Math Phys, 2001, 42: 4337--4342
[7] Fan E G. A Liouville integrable Hamiltonian system associated with a generalized Kaup-Newell spectral problem.
Physica A, 2002, 301: 105--116
[8] Fan E G. The zero curvature representation for hierarchy of nonlinear evolution equations. Phys Lett A, 2000, 27: 135--141
[9] Ma W X, Fuchssteiner B. Integrable theory of the perturbation equations. Chaos, Solitons and Fractals, 1996, 7: 1227--1250
[10] Ma W X. Integrable couplings of soliton equations by perturbations I. A general theory and application to the KdV
hierarchy. Methods and Applications of Analysis, 2000, 7: 21--56
[11] Zhang Y F, Zhang H Q. A direct method for integrable couplings of TD hierarchy. J Math Phys, 2002, 43: 466--472
[12] Zhang Y F, Zhang H Q. Integrable couplings of Botie-Pempinelli-Tu(BPT) hierarchy. Phys Lett A, 2002, 299: 543--548
[13] Ma W X. A bi-Hamiltonian formulation for triangular systems by perturbation. J Math Phys, 2002, 43: 1408--1421
[14] Guo F K, Zhang Y F. The quadratic-form identity for constructing the Hamiltonian structure of integrable systems.
J Phys A, 2005, 38: 8537--8548
[15] Ma W X, Chen M. Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebras.
J Phys A, 2006, 39: 10787--10801
[16] Tam H W, Zhang Y F. A new algebraic system and its applications. Chaos, Solitons and Fractals, 2005, 23: 151--162
[17] Tam H W, Zhang Y F. A type of loop algebra and the associated loop algebras. Chaos, Solitons and Fractals, 2008, 37: 552--565
[18] Zhang Y F, Guo F K. Matrix Lie algebras and integrable couplings. Commun Theor Phys, 2006, 46: 812--818
[19] Zhang Y F, Liu J. Induced Lie algebras of a six-dimensional matrix Lie algebra. Commun Theor Phys, 2008, 50: 289--294
[20] Zhang Y F, Tam H W. A few subalgebras of the Lie algebra A3 and a direct approach for obtaining integrable
couplings. Chaos, Solitons and Fractals, 2007, 33: 1424--1432
[21] Zhang Y F, Tam H W. The multi-component KdV hierarchy and its multi-component integrable coupling system.
Chaos, Solitons and Fractals, 2005, 23: 651--655
[22] Zhang Y F, Tam H W. Three kinds of coupling integrable couplings of the Korteweg-de Vries hierarchy of evolution equations. J Math Phys, 2010, 51: 043510--18
[23] Zhang Y F, Tam H W. Generalized mKdV equation, Liouville equation, Sine-Gordon equation and sinh-Gordon equation as well as a formal Backlund transformation. Int J Modern Phys B, 2011, 25: 2449--2460
[24] Ma W X. A discrete variational identity on semi-direct sums of Lie algebras. J Phys A, 2007, 40: 1555--1569
[25] Ma W X, Xu X X, Zhang Y F. Semi-direct sums of Lie algebras and continuous integrable couplings. Phys. Lett A, 2006, 351: 125--130
[26] Ma W X, Xu X X, Zhang Y F. Semidirect sums of Lie algebras and discrete integrable couplings. J Math Phys, 2006, 47: 053501--16
[27] Ma W X. Loop algebras and bi-integrable couplings. Chin. Annuals Math. Series B, 2012, 33: 207--217
[28] Zhang Y F, Mei J Q. Lie algebras and integrable systems. Commun Theor Phys, 2012, 57: 1012--1022
[29] Zhang Y F. A method for generating Lie algebras and applications. Discontinuity, Nonlinearity, and Complexity,
2012, 1: 211--224
[30] Zhang Y F, Tam H W. Four Lie algebras associated with R6 and their applications. J Math Phys, 2010, 51: 093514--30
[31] Zhang Y F. Lie algebras for constructing nonlinear integrable couplings. Commun Theor Phys, 2011, 56: 805--812
\REF{
[32]}Tam H W, Zhang Y F. An integrable system and associated
integrable models as well as Hamiltonian structure.
J Math Phys, 2012, {\bf 53}: 103508--25
\REF{
[33]}Gilson C, Lambert F, et al. On the combinatorics of the
Hirota D-operators. Pro R Soc Lond A, 1996, {\bf 452}: 223--234
\REF{
[34]}Lambert F, Springael J. Soliton equations and simple
combinatorics. Acta Appl Math, 2008, {\bf 102}: 147--178
\REF{
[35]}Bell E T. Exponetial polynomials. Ann Math,
1934, {\bf 35}: 258--277
\REF{
[36]}Fan E G. The integrability of nonisospectral and
variable-coefficient KdV equation with binary Bell polynomials.
Phys Lett A, 2011, {\bf 375}: 493--497 |