[1] Li Yishen, Zhang Lining. Super AKNS scheme and its infinite conserved currents. Nuovo Cimento A, 1986, 93(2): 175--183
[2] Tao S X, Xia T C. Two super-integrable hierarchies and their super-Hamiltonian structures. Commun Nonlinear Sci Numer Simulat, 2011, 16: 127--132
[3] Tao S X, Xia T C. Lie algebra and Lie super algebra for integrable couplings of C-KdV hierarchy. Chin Phys Lett,
2010, 27: 040202
[4] Hu X B. An approach to generate superextensions of integrable systems. J Phys, 1997, 30A(2): 619--632
[5] Ma W X, He J S, Qin Z Y. A supertrace identity and its applications to super integrable systems. J Math Phys, 2008, 49(3): 033511
[6] Ma W X. Variational identities and Hamiltonian structures//Ma W X, Hu X B, Liu Q P.Nonlinear and Modern Mathematical Physics. Melville, NY: American Institute of Physics, 2010: 1--27
[7] He Jingsong, Yu Jing, Zhou Ruguang, Cheng Yi. Binary nonlinearization of the super AKNS system. Modern Phys Lett, 2008, 22B(4): 275--288
[8] Yu Jing, He Jingsong, Ma Wenxiu, Cheng Yi. The Bargmann symmetry constraint and binary nonlinearization of the super Dirac systems. Chin Ann Math, 2010, 31B(3): 361--372
[9] Yu J, Han J S, He J S. Binary nonlinearization of the super AKNS system under an implicit symmetry constraint. J
Phys, A: Math Theor, 2009, 42: 465201
[10] Cao C W. A Bargmann sstem and an involutive representation of solutions to the coupled Harry Dym equation.
Acta Math Sinica, 1992, 35(3): 314--322
[11] Ma W X, Strampp W. An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems.
Phys Lett, 1994, 185A(3): 277--286
[12] Ma Wenxiu. New finite-dimensional integrable systems by symmetry constraint of the Kdv equation. J Phys Soc Japan, 1995, 64(4): 1085--1091
[13] Ma W X. Symmetry constraint of MKDV equations by binary nonlinearization. Phys A, 1995, 219(3/4): 467--481
[14] Ma W X, Zhou R G. Binary nonlinearization of spectral problems of the perturbation AKNS systems, Chaos Solitons Fractals, 2002, 13(7): 1451--1463
[15] Ma W X. Binary nonlinearization for the Dira systems. Chin Ann Math, 1997, 18B(1): 79--88
[16] Zhou R G, Ma W X, Wang J L. Integrable deformations of binary constrained soliton flows. Chinese Annals of Mathematics, 2011, 32A: 161--172
[17] Li Y S, Chen D Y. The Transformation operator IV of Nonlinear Evolution Equations. Acta Mathematica Sinica, 1986, 29(1): 127--134
[18] Rendaoerji Si. Hamilton structure of the Li equation hierarchy. Journal of Inner Mongolia Normal University (Natural Science Edition), 1994, 2: 8--12
[19] Fan E G. Integrable System and Computer Algebra. Beijing: Science Press, 2004
[20] Zhou R G. Li-Chen's Eigenvalue problem and an associated classical integrable system. Journal of Xuzhou Teachers College, 1992, 10(1): 1--6 |