[1] Alatancang, Huang J J, Fan X Y. Structure of the spectrum of infinite dimensional Hamiltonian operators. Sci China ser A-Math, 2008, 5: 915--924
[2] Atkinson F V, Langer H, Mennicken R, Shkalikov A A. The essential spectrum of some matrix operators. Math Nach, 1994, 167: 5--20
[3] Azizov T Y, Dijksma A A. On the boundedness of Hamiltonian operators. Proc Amer Math Soc, 2002, 131: 563--576
[4] Azizov T Y, Kiriakidi V K, Kurina G A. An indefinite approach to the reduction of a nonnegative Hamiltonian operator function to a block diagonal form. Funct Anal Appl, 2001, 35: 220--221
[5] Feng K, Qin M Z. The Symplectic Methods for the Computation of Hamiltonian Equations. Lecture Notes in Mathematics 1297. New York: Springer-Verlag, 1987: 1--37
[6] Gohberg I C, Goldberg S. Basic Operator Theory. Boston: Birkh\"{a}user, 1981
[7] Huang J J, Alatancang, Wu H Y. Descriptions of spectra of infinite dimensional Hamiltonian operators and their applications. Math Nach, 2010, 283: 1144--1154
[8] Huang J J, Alatancang, Wang H. Completeness of the system of eigenvector of off-diagonal operator matrices and applications in elasticity theory. Chin Phys, 2010, 19B: 120--201
[9] Huang J J, Alatancang, Wang H. Symplectic eigenfunction expansion method and its application to two-dimensional elasticity problems based on stress formulation. Appl Math Mech-Engl Ed, 2010, 31: 1039--1048
[10] Huang J J, Alatancang, Wang H. The symplectic eigenfunction expansion theorem and its application to plate bending equation. Chin Phys, 2009, 18B: 3616--3623
[11] Kurina G A. Invertibility of nonnegatively Hamiltonian operators in a Hilbert space. Differential Equations, 2001, 37: 880--882
[12] Kurina G A. Invertibility of an operator appearing in the control theory for linear systems. Math Notes, 2001, 70: 206--212
[13] Kurina G A, Martynenko G V. On the reducibility of a nonnegatively Hamiltonian periodic operator function in a real Hilbert space to a block diagonal form. Differential Equations, 2001, 37: 227--233
[14] Langer H, Ran A C M, van de Rotten B A. Invariant subspaces of infinite dimensional Hamiltonians and solutions
of the corresponding Riccati equations. Oper Theory Adv Appl, 2001, 130: 235--254
[15] Reed M, Simon B. Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness. INC, London: Academic Press, 1975
[16] Taylor A E, Lay D C. Introduction to Functional Analysis. 2nd ed. New York: John Wiley \& Sons, 1980
[17] Wu D Y, Chen A. Invertibility of nonnegative Hamiltonian operator with unbounded entries. J Math Anal Appl, 2011, 373: 410--413 |