数学物理学报 ›› 2014, Vol. 34 ›› Issue (5): 1049-1060.

• 论文 •    下一篇

高斯核正则化学习算法的泛化误差

张永全1,2|李有梅1|曹飞龙1|徐宗本2   

  1. 1.中国计量学院  |数学与信息科学系 杭州 |310018;
    2.西安交通大学 |信息与系统科学研究所 西安 |710049
  • 收稿日期:2012-07-28 修回日期:2013-12-27 出版日期:2014-10-25 发布日期:2014-10-25
  • 基金资助:

    国家自然科学基金(11301494)和浙江省自然科学基金(Q12A01026)资助.

Generalization Bounds of Compressed Regression Learning Algorithm

 ZHANG Yong-Quan1,2, LI You-Mei1, CAO Fei-Long1, XU Zong-Ben2   

  1. 1.Department of Information and Mathematics Sciences, China Jiliang University, Hangzhou 310018;
    2.Institute for Information and System Sciences, Xi'an Jiaotong University, Xi'an 710049
  • Received:2012-07-28 Revised:2013-12-27 Online:2014-10-25 Published:2014-10-25
  • Supported by:

    国家自然科学基金(11301494)和浙江省自然科学基金(Q12A01026)资助.

摘要:

对广义凸损失函数和变高斯核情形下正则化学习算法的泛化性能展开研究. 其目标是给出学习算法泛化误差的一个较为满意上界. 泛化误差可以利用正则误差和样本误差来测定. 基于高斯核的特性, 通过构构建一个径向基函数(简记为RBF) 神经网络, 给出了正则误差的上界估计, 通过投影算子和再生高斯核希尔伯特空间的覆盖数给出样本误差的上界估计. 所获结果表明, 通过适当选取参数σλ,可以提高学习算法的泛化性能.

关键词: 学习理论, RBF神经网络, 高斯核, 泛化误差

Abstract:

This article studies generalization performance of regularized learning algorithm with a general convex loss function and varying Gaussian kernels. Our goal is to give a satisfactory estimate of  generalization error for the learning algorithm. The
generalization error is measured by regularization error and sample error. The regularization error is estimated by constructing a radial basis function (briefly denoted by RBF) neural network in view of the special structures of Gaussian kernels.  The sample error is obtained by using projection operator and covering number of reproducing kernel Hilbert spaces with Gaussian kernels. The obtained results demonstrate the  learning algorithm has good  generalization performance  with suitable choice of m and λ.

Key words: Learning theory, RBF neural network, Gaussian kernels, Generalization error

中图分类号: 

  • 41A25