[1] do Carmo M P, Xia C Y. Ricci curvature and the topology of open manifolds. Math Ann, 2000, 316: 391--400
[2] Cheeger J. Critical Points of Distance Functions and Applications to Geometry. Lecture Notes in Mathematics Vol 1504. New York: Springer-Verlag, 1991
[3] Grove K. Critical point theory for distance functions. Proc Sympos Pure Math, 1993, 54: 357--385
[6] K. Grove, K. Shiohama. A generalized sphere theorem, Ann of Math, 1977, 106: 201--211
[4] Itokawa Y, Machigashira Y, Shiohama K. Generalized Toponogov's Theorem for Manifolds with Radial Curvature Bounded Below. Explorations in Complex and Riemannian Geometry, Contemp Math 332. Providence RI: Amer Math Soc, 2003
[5] Katz N, Kondo K. Generalized space forms. Trans Amer Math Soc, 2002, 354: 2279--2284
[6] Kondo K, Tanaka M. Total curvatures of model surfaces control topology of complete open manifolds with radial curvature bounded below II. Trans Amer Math Soc, 2010, 362: 6293--6324
[10] K. Kondo and M. Tanaka. Sufficient conditions for open manifolds to be diffeomorphic to Euclidean spaces, Differential Geometry and its Applications. 29(2011), 597--605.
[7] Mashiko Y, Shiohama K. Comparison geometry referred to the warped product models. Tohoku Math J, 2006, 58: 461--473
[8] Shen Z M. Complete manifolds with nonnegative Ricci curvature and large volume growth. Invent Math, 1996, 125: 393--404
[9] Shiohama K, Shioya T, Tanaka M. The geometry of total curvature on complete open surfaces. Cambridge: Cambridge University Press, 2003
[10] Tanaka M. On the cut loci of a von Mangoldt's surface of revolution. J Math Soc Japan, 1992, 44: 631--641
[11] Wang Q L, Xia C Y. Topological rigidity theorems for open Riemannian manifolds. Math Nachr, 2006, 7: 805--811
[12] Wu C X, Xie Z Q, Li G H. Diffeomorphic theorems for open Riemannian manifolds with curvature decay. Publ Math Debrecen, 2011, 79: 133--144
[13] Xia C Y. Open manifolds with sectional curvature bounded below. Amer J Math, 2000, 122: 745--755
[18] K. Shiohama, and M. Tanaka. Compactification and maximal diameter theorem for noncompact manifolds with radial curvature bounded below, Math. Zeit. 241 No.2 (2002), 341-351. |