[1] Young L C. An inequality of the H\"{o}lder type connected with Stieltjes integration. Acta Math, 1936, 67: 251--282
[2] Doukhan P, Oppenheim G, Taqqu M S. Theory and Applications of Long-range Dependence. Berlin: Springer, 2003
[3] A\"{\i}t-Sahalia Y, Jacod J. Testing for jumps in a discretely observed process. Ann Statist, 2009, 37: 184--222
[4] Barndorff-Nielsen O E, Shephard N. Econometric analysis of realized volatility and its use in estimating stochastic volatility models. J Roy Statist Soc Ser B, 2002, 64: 253--280
[5] Barndorff-Nielsen O E, Shephard N. Power and bipower variation with stochastic volatility and jumps (with discussion). J Financial Econometrics, 2004, 2: 1--48
[6] Barndorff-Nielsen O E, Shephard N. Econometric analysis of realised covariation: high frequency covariance, regression and correlation in financial economics. Econometrica, 2004, 72: 885--925
[7] Barndorff-Nielsen O E, Shephard N. Econometrics of testing for jumps in financial economics using bipower
variation. J Financial Econometrics, 2006, 4: 1--30
[8] Mancini C. Disentangling the jumps of the diffusion in a geometric jumping Brownian motion. G dell'Inst Ital degli
Attuari, 2001, LXIV: 19--47
[9] Mancini C. Estimation of the characteristics of the jumps of a general Poisson-diffusion model. Scand Actuar J, 2004, 1: 42--52
[10] Mancini C. Non-parametric threshold estimation for models with stochastic diffusion coefficients and jumps. Scand J Statist, 2009, 36: 270--296
[11] Woerner J H C. Variational sums and power variation: a unifying approach to model selection and estimation in semimartingale models. Statistics & Decisions, 2003, 21: 47--68
[12] Woerner J H C. Power and Multipower Variation: Inference for High-frequency Data//Shiryaev A N, Grossinho M R,
Esquivel M, Oliveira P. Stochastic Finance. Berlin: Springer-Verlag, 2006: 343--364
[13] A\"{\i}t-Sahalia Y, Jacod J. Is Brownian motion necessary to model high-frequency data? Ann Statist, 2010, 38: 3093--3128
[14] Jacod J. Asymptotic properties of power variations of L\'{e}vy processes. ESAIM-Probab Stat, 2007, 11: 173--196
[15] Jacod J. Asymptotic properties of realized power variations and related functionals of semimartingales. Stoch Proc Appl, 2008, 118: 517--559
[16] L\'{e}pingle D. La variation d'ordre p des semimartingales. Probability Theory and Related Fields, 1976, 36: 285--316
[17] Vetter M. Limit theorems for bipower variation of semimartingales. Stoch Proc Appl, 2010, 120: 22--38
[18] Corcuera J M, Nualart D, Woerner J H C. Power variation of some integral fractional processes. Bernoulli, 2006, 12: 713--735
[19] Barndorff-Nielsen O E, Corcuera J M, Podolskij M. Power variation for Gaussian processes with stationary increments. Stoch Proc Appl, 2009, 119: 1845--1865
[20] Barndorff-Nielsen O E, Corcuera J M, Podolskij M, Woerner J H C. Bipower variation for Gaussian processes with
stationary increments. J Appl Probab, 2009, 46: 132--150
[21] 刘广应, 张新生. 带跳的分数维Brown 运动幂变差的渐近行为. 中国科学, 2011, 41: 81--94
[22] Shen G J, Yan L T, Liu J F. Power variation of subfractional Brownian motion and application. Acta Mathematica Scientia, 2013, 33: 901--912
[23] Liu G Y, Zhang X S. Power variation of fractional integral processes with jumps. Statistics and Probability Letters, 2011, 81: 962--972
[24] Jacod J, Shiryaev A N. Limit Theorems for Stochastic Processes. Berlin: Springer-Verlag, 2003 |