[1] Furuta T. Invitation to Linear Operators. London: Taylor & Francis, 2001
[2] Yuan J T, Gao Z S. Weyl spectrum of class A(n) and n-paranomal operators. Integr Equ Oper Theory, 2008, 60: 289--298
[3] Yuan J T, Ji G X. On (n, k)-quasiparanormal operators. Studia Math, 2012, 209: 289--301
[4] Kubrusly C S, Duggal B P. A note on k-paranormal operators. Oper Matrices, 2010, 4: 213--223
[5] Han Y M, Na W H. A note on quasi-paranormal operators. Mediterr J Math, 2012, 1: 1--11
[6] Stampfli J. Hyponormal operators and spectral density. Trans Amer Math Soc, 1965, 117: 469--476
[7] Jeon I H, Kim I H. On operators satisfying T*|T2|T≥T*|T|2T. Linear Algebra Appl, 2006, 418: 854--862
[8] Uchiyama A. On the isolated points of the spectrum of paranomal operators. Integr Equ Oper Theory, 2006, 55: 145--151
[9] Tanahashi K, Jeon I H, Kim I H, et al. Quasinilpotent part of class A or (p, k)-quasihyponormal operators. Oper
Theory, Adv Appl, 2008, 187: 199--210
[10] Duggal B P, Kubrusly C S. Quasi-similar k-paranormal operators. Oper Matrices, 2011, 5: 417--423
[11] Heuser H G. Functional Analysis. New York: John Wiley and Sons, 1982
[12] Laursen K B, Neumann M M. Introduction to Local Spectral Theory. Oxford: Clarendon Press, 2000
[13] Aiena P. Fredholm and Local Spectral Theory with Applications to Multipliers. London: Kluwer Academic Publishers, 2004
[14] Aiena P, Biondi M T. Weyl type theorems for polaroid operators. Extracta Math, 2008, 23: 103--118
[15] Harte R E, Lee W Y. Another note on Weyl's theorem. Trans Amer Math Soc, 1997, 349: 2115--2124
[16] Weyl H. \"{U}ber beschr\"{a}nkte quadratische Formen, deren Dierenz vollsteig ist. Rend Circ Mat Palermo, 1909, 27: 373--392
[17] Coburn L A. Weyl's theorem for nonnormal operators. Michigan Math J, 1966, 13: 285--288
[18] Cao X H. Analytically class a operators and Weyl's theorem. J Math Anal Appl, 2006, 320: 795--803
[19] Curto R E, Han Y M. Weyl's theorem holds for algebraically paranormal operators. Integr Equ Oper Theory, 2003, 47: 307--314
[20] Aiena P, Aponte E, Balzan E. Weyl type theorems for left and right polaroid operators. Integr Equ Oper Theory, 2010, 66: 1--20
[21] Oudghiri M. Weyl's theorem and perturbations. Integr Equ Oper Theory, 2005, 53: 535--545 |