[1] Anile A M. Relativistic Fluids and Magneto-Fluids. Cambridge Monographs on Mathematical Physics. New York: Cambridge University Press, 1989
[2] Chen G, Feldman M. Multidimensional transonic shock and free boundary problem for nonlinear equations of mixed type. J Amer Math Soc, 2003, 16: 461--494
[3] Chen G, Wang H. The Cauchy Problems for the Euler Equations for Compressible Fluids. Handbook of Mathematical Fluid Dynamics. Netherlands: Elservier Science B V, 2002: 421--543
[4] Courant R, Friedrichs K O. Supersonic Flow and Shock Waves. New York: Springer-Verlag, 1948
[5] Geng Y C, Li Y C. Local smooth solutions of the three dimensional isentropic relativistic Euler equations. Chin Ann Math, 2014, 35B(2): 301--318
[6] Glimm J. Solutions in the large for nonlinear hyperbolic system of equations. Comm Pure Appl Math, 1965, 18: 95--105
[7] Guo Y, Tahhvildar-Zadeh S. Formation of singularities in relativistic fluid dynamics an in spherically symmetric plasma dynamics. Cntemp Math, 2009, 238: 151--161
[8] Hao X W, Li Y C. Non-relativistic global limits of entropy solutions to the cauchy problem of the three dimensional relativistic Euler equations with
spherical symmetry. Commun Pure Appl Anal, 2010, 9: 365--386
[9] Hsu C H, Lin S, Makino T. On spherically symmetric solutions of the relativistic Euler equation. J Diffrential Equations, 2004, 201: 1--24
[10] Ladau L D, Lifchitz E M. Fluid Mechnics (2nd ed). New York: Pergamon Press, 1987: 505--512
[11] Liu T P. Quasilinear hyperbolic systems. Commun Math Phys, 1979, 68: 141--172
[12] Lefloch P, Ukai S. A symmetrization of the relativistic Euler equations in several spatial variables. Kinet Relat Modles, 2009, 2: 275--292
[13] Li T T, Qin T. Physics and Partial Differential Equations (2nd ed) (in Chinese). Beijing: Higher Education Press, 2005
[14] Li Y C, Geng Y C. Non-relativistic global limits of entropy solutions to the isentropic relativistic Euler equations. Z Angew Math Phys, 2006, 57, 960--983
[15] Li Y C, Shi Q. Global existence of the entropy solutions to the isentropic relativistic Euler equations. Commun Pure Appl Anal, 2005, 4: 763--778
[16] Makino T, Ukai S. Local smooth solutions of the relativistic Euler equation. J Math Kyoto Univ, 1995, 35: 105--114
[17] Makino T, Ukai S. Local smooth solutions of the relativistic Euler equation, II. Kodai Math J, 1995, 18: 365--375
[18] Mizohata K. Global solutions to the relativistic euler equation with spherical symmetry. Japan J Indust Appl Math, 1997, 14: 125--157
[19] Pan R, Smoller J. Blowup of smooth solutions for relativistic euler equations. Commun Math Phys, 2006, 262: 729--755
[20] Pant V. Global entropy solutions for isentropic relativistic fluid dynamics. Commu Partial Diff Eqs, 1996, 21: 1609--1641
[21] Rendall A. The Initial Value Problem for Self-gravitating Fluid Bodies. Mathematical Physics X (Leipzig). Berlin: Springer, 1992
[22] Shi C C. Relativistic Fluid Dynamics (in Chinese). Beijing: Science Press, 1992: 161--232
[23] Taub A H. Relativistic Rankine-H\"{u}goniot equations. Phys Rev, 1948, 74: 328--334
[24] Thompson K. The special relativistic shock tube. J Fluid Mech, 1986, 171: 365--375
[25] Thorne K S. Relativistic shocks: The Taub adiabatic. Astrophys J, 1973, 179: 897--907
[26] Weinberg S. Gravitation and Cosmology: Applications of the General Theory of Relativity. New York: Wiley, 1972 |