[1] Linβ T. Analysis of a Galerkin finite element method on a Bakhvalov-Shishkin mesh for a linear convection--diffusion
problem. IMA J Numer Anal, 2000, 20(4): 621--632
[2] Lin{\ss} T. Layer-adapted meshes for convection--diffusion problems. Comp Meth Appl Mech Engng, 2003, 192(9): 1061--1105
[3] Stynes M, O'Riordan E. A uniformly convergent Galerkin method on a Shishkin mesh for a convection-diffusion problem. J Math Anal Appl, 1997, 214(1): 36--54
[4] Roos H G, Stynes M, Tobiska L. Robust Numerical Methods for Singularly Perturbed Differential Equations:
Convection-Diffusion-Reaction and Flow Problems. Berlin: Springer, 2008
[5] Lin{\ss} T, Stynes M. Numerical methods on Shishkin meshes for linear convection--diffusion problems. Comp Meth Appl Mech Engng, 2001, 190(28): 3527--3542
[6] Roos H G, Zarin H. The discontinuous Galerkin finite element method for singularly perturbed problems. Challenges in Scientific Computing-CISC 2002, 2003, 35: 246--267
[7] Xie Z Q, Zhang Z. Superconvergence of DG method for one-dimensional singularly perturbed problems. J Comp Math, 2007, 25(2): 185--200
[8] Xie Z Q, Zhang Z. Uniform superconvergence analysis of the discontinuous Galerkin method for a singularly perturbed problem in 1-D. Math Comput, 2010, 79(269): 35--45
[9] Zhu P, Xie Z Q, Zhou S Z. A coupled continuous-discontinuous FEM approach for convection diffusion equations. Acta Math Sci, 2011, 31B(2): 601--612
[10] Zhu P, Xie Z Q, Zhou S Z. A uniformly convergent continuous--discontinuous Galerkin method for singularly perturbed problems of convection--diffusion type. Appl Math Comput, 2011, 217(9): 4781--4790
[11] Ciarlet P G. The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland, 1978 |