[1] Feller W. An Introduction to Probability Theory and Its Application II. New York: Wiley, 1971
[2] Chover J. A law of the iterated logarithm for stable summands. Proc Amer Soc, 1966, 17(2): 441--443
[3] Vasudeva R, Divanji G. LIL for delayed sums and non-identically distributed setup. Probab Theory Appl, 1992, 37(3): 534--562
[4] Zinchenko N M. A Modified law of iterated logarithm for stable random variables. Theory Probab Math Statist, 1994, 49(1): 69--76
[5] 陈斌. 关于Chover重对数律.高校应用数学学报,1993, 8A(2): 197--201
[6] 祁永成,成平.稳定律吸引场中部分和的重对数律.数学年刊,1996, 17A(2): 195--206
[7] 陈平炎,陈清平. φ -混合机变量序列的重对数律. 数学学报,2003, 46(3): 571--580
[8] 蔡光辉. ρ -混合序列的重对数律.数学学报, 2006, 49(1): 155--160
[9] 谭希丽, 种孝文. ρ合序列的Chover型重对数律. 吉林大学学报(理学版), 2001, 49(3): 442--446
[10] 陈平炎,黄立虎.稳定机变量序列几何加权和的Chover型重对数律. 数学学报, 2000, 43(6): 1063--1070
[11] Chen P Y, Yu J H. On Chover's LIL for the weighted sums of stable random variables. Acta Math Scientia, 2003, 23B(1): 74--82
[12] 陈平炎,柳向东.一类随机变量序列加权和的Chover型重对数律. 数学学报, 2003, 46(5): 999--1006
[13] Joag-Dev K, Proschan F. Negative assosciation of random variables with applications. Ann Statist, 1983, 11: 286--295
[14] 刘立新,吴荣.NA随机变量序列的最大部分和不等式及有界重对数律. 数学学报, 2002, 45(5): 969--978
[15] Bingham N H, Goldie C M, Teugels J L. Regular Variation. New York: Cambridge University, 1987
[16] 张立新, 闻继威. B值混合随机场的强大数律. 数学年刊, 2001, 22A(2): 205--216
[17] Li D L, Rao M B, Jiang T F, Wang X C. Complete convergence and almost sure convergence of weighted sums of random variables. T Theo Probab, 1995, 8(1): 49--76
[18] Chen P Y, Gan S X. Limiting behavior of weighted sums of i.i.d. random variables. Statist Probab Lett, 2007, 77(16): 1589--1599 |