[1] Resnick S I. Extreme Values, Regular Variation and Point Processes. New York: Springer, 1987
[2] de Haan L, Stadtm\"{u}ller U. Generalized regular variation of second order. J Austral Math Soc (Ser A), 1996, 61(3): 381--395
[3] Hill B M. A simple general approach to inference about the tail of a distribution. Ann Statist, 1975, 3(5): 1163--1174
[4] Mason D M. Laws of large numbers for sums of extremes values. Ann Statist, 1982, 10(3): 754--764
[5] Deheuvels P, Haeusler E, Mason D M. Almost sure convergence of the Hill estimator. Math Proc Cambridge Philos Soc, 1988, 104(2): 371--381
[6] de Haan L, Resnick S I. On asymptotic normality of the Hill estimator. Stochastic Models, 1998, 14(4): 849--867
[7] Peng Z X, Nadarajah S. Strong convergence bounds of the Hill-type estimator under second-order regularly varying conditions. J Inequal Appl, 2006, 2006: 1--7
[8] Wellner J A. Limit theorem for the ratio of empirical distribution function to the true distribution function. Z Wahrsch Verw Gebiete, 1978, 45(1): 73--88
[9] de Haan L. Slow variation and characterization of domains of attraction//Tiago de Oliveira J ed. Statistical Extremes and Applications. Dordrecht: Reidel, 1984: 31--48
[10] Geluk J L, de Haan L. Regular variation, extensions and tauberian theorems. Amsterdam: Mathematical Centre Tract 40, 1987
[11] Dekkers A L M, Einmahl J H J, de Haan L. A moment estimator for the index of an extreme-value distribution. Ann Statist, 1989, 17(4): 1833--1855
[12] Bingham N H, Goldie C M, Teugels J L. Regular Variation. Cambridge: Cambridge University Press, 1987 |