[1] Menger K. Statistical metrics. Proc Nat Acad Sci USA, 1942, 28: 535--537
[2] Schweizer B, Sklar A. Probabflistic Metric Spaces. New York, Amsterdam, Oxford: North-Holland,
1983
[3] 向淑晃. 概率赋范空间上的一些不动点定理的进一步分析. 数学物理学报, 1999, 19A: 456--460
[4] Chang S S, Cho Y J, Kang S M. Nonlinear Operator Theory in Probalistic Metric Spaces. Huntington, New York: Nova Science Publishers, 2001
[5] Bahrami F, Nikfar M. The topological structure of a certain Menger space. J Math Anal Appl, 2007, 334: 172--182
[6] Alsina C, Schwerzer B, Sklar A. On the definition of a probabilistic normed space. Aequationes Math, 1993, 46: 91--98
[7] Guillen B L, Lallena J A R, Sempi C. Some classes of probabilistic normed spaces. Rendiconti di Matem, 1997, 17: 237-252
[8] Sempi C. A short and partial history of probabilistic normed spaces. Mediterr J Math, 2006, 3: 283--300
[9] Klementa E P, Mesiar R, Papc E. Triangular norms position paper I: basic analytical and algebraic properties. Fuzzy Sets and Systems, 2004, 143: 5--26
[10] Saminger-Platz S, Sempi C. A primer on triangle functions I. Aequationes Math, 2008, 76: 201--240
[11] Alsina C, Schwerzer B, Sempi C, Sklar A. On the definition of a probabilistic inner product space. Rand Math Appl, 1997, 17: 115--127
[12] Dumitrescu C. Un produit scalaire probabiliste. Rev Roumania Math Pure et Appl, 1981, 26: 399--404
[13] 游兆永, 朱林户. 概率内积空间. 科学通报, 1983, 8: 456--459
[14] 游兆永, 朱林户. 概率内积空间 (II). 西安交通大学学报, 1985, 19: 119--120
[15] Zhang S S. Fixed point theorems in probabilistic inner product spaces. Applied Mathematics and Mechanics, 1985, 6: 67--74
[16] Zhang S S. On the probabilistic inner product spaces. Applied Mathematics and Mechanics, 1986, 7: 1035--1042
[17] Zhang S S, Goudarzi M, Saadati R, Vaezpour S M. Intuitionistic Menger inner product spaces and applications to
integral equations. Applied Mathematics and Mechanics, 2010, 31: 415--424
[18] 施德明, 王向东. 概率内积空间中压缩型映象的不动点定理. 郑州大学学报, 1990, 22: 6--10
[19] Xiao J Z. On linearly topological structure and orthogonality of Menger probabilistic inner product spaces. J Math Res Exp, 2001, 21: 355--361
[20] Huang X Q, Zhu C X, Liu X J. Fixed point theorem in probabilistic inner product spaces and its applications. J Appl Math Comp, 2005, 19: 363--370
[21] 林颐锜, 单佑民. 关于概率内积空间的定义. 南京师范大学学报, 1988, 24: 12--14 |