[1] Hale J K. Ordinary Differential Equations. New York: Wiley-Interscience, 1969
[2] Guckenheimer J, Holmes P. Nonlinear Oscillation, Dynamical Systems, and Bifurcations of Vector Fields. New York:
Springer, 1983
[3] Chow S N, Hale J K. Methods of Bifurcation Theory. New York, Berlin: Springer, 1982
[4] Smoller J, Wasserman A. Global bifurcation of steady-state solutions. J Differential Equ, 1981, 39: 269--291
[5] Chow S N, Sanders J A. On the number of critical points of the period. J Differential Equ, 1986, 64: 51--66
[6] Gavrilov L. Remark on the number of critical points of the period. J Differential Equ, 1993, 101: 58--65
[7] Li C, Lu K. The period function of hyperelliptic Hamiltonians of degree 5 with real critical points. Nonlinearity, 2008, 21: 465--483
[8] He Z, Zhang W. Critical periods of a periodic annulus linking to equilibria at infinity in a cubic system. Discr Contin
Dynam Syst, 2009, 24: 841--854
[9] Baker G L, Blackburn J A. The Pendulum: a Case Study in Physics. New York: Oxford University Press, 2005
[10] Chicone C, Felts K. Non-monotone period functions for impact pendulum. Electronic J Differential Equ, 2008, 2008:
1--9
[11] Lichardov\'{a} H. The period of a whirling pendulum. Mathematica Bohemica, 2001, 126: 593--606
[12] Loud W S. Periodic solution of x'' + cx' + g(x) =\varepsilon f(t). Mem Am Math Soc, 1959, 31: 1--57
[13] Byrd P F, Friedman M D. Handbook of Elliptic Integrals for Engineers and Scientists (2nd Edition). New York, Heidelberg, Berlin: Springer, 1971 |