数学物理学报 ›› 2014, Vol. 34 ›› Issue (1): 9-15.

• 论文 • 上一篇    下一篇

具有人口转变经济增长模型中的分歧和多重增长路径

蔡东汉|叶辉   

  1. 武汉大学数学统计学院 武汉 430072
  • 收稿日期:2012-10-18 修回日期:2013-11-12 出版日期:2014-02-25 发布日期:2014-02-25
  • 基金资助:

    国家自然科学基金(71271158)资助.

Bifurcation and Multiple Growth Paths in an Economic Growth Model with Demographic Transition

 CAI Dong-Han, YE Hui   

  1. College of Mathematics and Statistics, Wuhan University, Wuhan 430072
  • Received:2012-10-18 Revised:2013-11-12 Online:2014-02-25 Published:2014-02-25
  • Supported by:

    国家自然科学基金(71271158)资助.

摘要:

该文对Holger Sriulik[1]给出的模型作了进一步的研究. 证明在给定的技术水平下, 描述模型的动力系统出现鞍结定分歧. 当模型存在两个平衡点时, 鞍点的稳定流形将y-k平面的第一像限分成两个区域, 其左边为Malthus区域, 该区域的所有轨道收敛于一个低水平的平衡点; 其右边为非Malthus区域, 该区域的轨道为正常的经济增长路径. 经济可以通过提高技术水平或提高人均收入的“大冲击”方法逃离“Malthus贫困陷阱”.

关键词: 分歧, 相图分析, 人口转变, 多重增长路径, Malthus贫困陷阱

Abstract:

In this paper, we make a further study of the model provided by Holger Sriulik[1]. It is proved that the dynamical system  which describes the model has no nonzero equilibrium  when α>α-, one nonzero equilibrium when α=α- and two equilibria, one saddle and one node when α>α- and α--α is small enough. So the dynamical system undergoes a saddle-node bifurcation at α=α-. By phase portrait analysis, we obtain that the first quadrant of y-k plane is divided into two regions by the stable manifold of the saddle point when there exists two equilibria and the economy has a Malthusian region in which all growth paths converge to the low level equilibrium and a non-Malthusian region in which the economy has normal growth path. Therefore, the economy can escape the “Malthusian poverty trap”by promoting the technological growth rate or by “big-push”which promotes the per capita income.

Key words: Bifurcation, Phase portrait analysis, Demographic transition, Multiple growth paths, Malthusian poverty trap

中图分类号: 

  • 91B62