[1] Burykin A, Denisov A. Determination of the unknown sources in the heat-conduction equation. Comput Math Model, 1997, 8(4): 309--313
[2] Cannon J, DuChateau P. Structural identification of an unknown source term in a heat equation. Inverse Probl, 1998, 14(3): 535--551
[3] Cannon J, Perez-Esteva S. Uniqueness and stability of 3d heat sources. Inverse Probl, 1991, 7: 57--62
[4] Choulli M, Yamamoto M. Conditional stability in determining a heat source. J Inverse Ill-Posed Probl, 2004, 12(3): 233--243
[5] Dou F F, Fu C L, Yang F. Optimal error bound and Fourier regularization for identifying an unknown source in the heat equation. J Comput Appl Math, 2009, 230(2): 728--737
[6] El~Badia A, Ha-Duong T.On an inverse source problem for the heat equation. Application to a pollution detection problem. J Inverse Ill-Posed Probl, 2002, 10(6): 585--600
[7] Engl H, Hanke M, Neubauer A. Regularization of inverse problems. Netherlands: Springer, 1996
[8] Farcas A, Lesnic D. The boundary-element method for the determination of a heat source dependent on one variable.
J Engrg Math, 2006, 54(4): 375--388
[9] Li G S. Data compatibility and conditional stability for an inverse source problem in the heat equation. Appl Math Comput, 2006, 173(1): 566--581
[10] Ling L, Yamamoto M, Hon Y C, Takeuchi T. Identification of source locations in two-dimensional heat equations.
Inverse Probl, 2006, 22(4): 1289--1305
[11] Park H, Chung J. A sequential method of solving inverse natural convection problems. Inverse Probl, 2002, 18(3): 529--546
[12] Ryaben{\'k}ii V, Tsynkov S, Utyuzhnikov S. Inverse source problem and active shielding for composite domains.
Applied Mathematics Letters, 2007, 20(5): 511--515
[13] Yamamoto M. Conditional stability in determination of force terms of heat equations in a rectangle. Math Comput Modelling, 1993, 18(1): 79--88 |