[1] Jaulent M, Jean C. The inverse s-wave scattering problem for a class of potentials depending on energy.
Comm Math Phys, 1972, 28: 177--220
[2] Gasymov M G, Guseinov G S. Determination of diffusion operator on the spectral data 1. Dokl Akad Nauk Azerb SSR, 1981, 37(2): 19--23
[3] Nabiev I M. The inverse quasiperiodic problem for a diffusion operator. Doklady Mathematcs, 2007, 76(1): 527--529
[4] Koyunbakan H, Panakhov E S. Half-inverse problem for diffusion operators on the finite interval. J Math Anal Appl, 2007, 326: 1024--1030
[5] 王於平, 杨传富, 黄振友. Schr\"{o}dinger 算子的二次微分束的半逆问题. 数学物理学报, 2011, 31(6): 1708--1717
[6] Yang C F. Reconstruction of the diffusion operator from nodal data. Z Natureforsch, 2010, 65A(1): 100--106
[7] Buterin S A, Shieh C T. Incomplete inverse spectral and nodal problems for differential pencils. Results in
Mathematics, 2011, DOI: 10.1007/s00025-011-0137-6
[8] Buterin S A. On half inverse problem for differential pencils with the spectral parameter in boundary conditions.
Tamkang Journal of Mathematics, 2011, 42(3): 355--364
[9] Mochizuki K, Trooshin I. Inverse problem for interior spectral data of Sturm-Liouville operator. J Inverse and Ill-Posed Problems, 2001, 9: 425--433
[10] Yang C F, Yang X P. An interior inverse problem for the Sturm-Liouville operator with discontinuous conditions.
Applied Mathematics Letters, 2009, 22: 1315--1319
[11] Wang Y P. An interior inverse problem for Sturm--Liouville operators with eigenparameter dependent boundary
conditions. TamKang Journal of Mathmetics, 2011, 42(3): 395--403
[12] Hochstadt H, Lieberman B. An inverse Sturm-Liouville problem with mixed given data. SIAM Journal of Applied
Mathematics, 1978, 34: 676--680
[13] Gesztesy F, Simon B. Inverse spectral analysis with partial information on the potential, II: the case of discrete spectrum. Trans Amer Math Soc, 2000, 352: 2765--2787
[14] Wei G S, Xu H K. On the missing eigenvalue problem for an inverse Sturm-Liouville problem. J Math Pure Appl, 2009, 91: 468--475
[15] McLaughlin J R. Inverse spectral theory using nodal points as data-a uniqueness result. J Differential Equations,
1988, 73: 354--362
[16] Shieh C T, Yurko V A. Inverse nodal and inverse spectral problems for discontinuous boundary value problems.
J Math Anal Appl, 2008, 347(1): 266--272
[17] Levin B J. Distribution of Zeros of Entire Functions. Providence: AMS Transl Vol 5. 1964
[18] Yurko V A. Method of Spectral Mappings in the Inverse Problem Theory. VSP, Utrecht: Inverse and Ill-posed Problems
Ser, 2002 |