数学物理学报 ›› 2013, Vol. 33 ›› Issue (6): 1189-1195.

• 论文 • 上一篇    

由内部谱数据确定的扩散算子的反问题

 王於平   

  1. 南京林业大学应用数学系 南京 210037
  • 收稿日期:2012-03-08 修回日期:2013-05-04 出版日期:2013-12-25 发布日期:2013-12-25

Inverse Problem for Diffusion Operators from Interior Spectral Data

 WANG Yu-Ping   

  1. Department of Applied Mathematics, Nanjing Forestry University, Nanjing |210037
  • Received:2012-03-08 Revised:2013-05-04 Online:2013-12-25 Published:2013-12-25

摘要:

研究了有限区间[0, π] 上的扩散算子的反问题, 证明如果已知边界条件中的系数h, 则部分特征函数在(0, π) 内某点的函数值及二组谱的部分谱能够惟一确定 势函数(q, p) 及边界条件中的系数H.

关键词: 反问题, 扩散算子, 势函数, 惟一性定理, 特征值

Abstract:

In this paper, we discuss the inverse problem for diffusion operators on the finite interval [0, π] from interior spectral data and show that if coefficient h of the boundary condition is known a priori,  then the potentials (q, p) and coefficient H of the boundary condition can be uniquely determined by a set of values of eigenfunctions at some interior point and parts of two spectra.

Key words: Inverse problem, Diffusion operator, Potential, Uniqueness theorem, Eigenvalue

中图分类号: 

  • 34A55