[1] Haddar H. The interior transmission problem for anisotropic Maxwell's equations and its applications to the inverse
problem. Math Meth Appl Sci, 2004, 27: 2111--2129
[2] Cakoni F, Colton D, Monk P. On the use of transmission eigenvalues to estimate the index of refraction from far field data. Inverse problem, 2007, 23: 507--522
[3]}Colton D, P\"{a}iv\"{a}rinta L, Lylvester J. The interior transmission problem. Inverse Probl Imaging, 2007, 1(1): 13--28
[4] Cristo M D, Sun J G. The determination of the support and surface conductivity of a partially coated object. Inverse Probl, 2007, 23: 1161--1179
[5] H\"{a}hner P. On the uniqueness of the shape of a penetrable, anisotropic obstacle. J Comput Appl Math, 2000, 116: 167--180
[6] Cakoni F, Colton D, Haddar H. The linear sampling method for anisotropic media. J Comput Appl Math, 2002, 146: 285--299
[7] Haddar H, Monk P. The linear sampling method for solving the electromagnetic inverse medium problem. Inverse Probl, 2002, 18: 891--906
[8] Cakoni F, Fares M, Haddar H. Analysis of two linear sampling methods applied to electromagnetic imaging of buried
objects. Inverse Probl, 2006, 22: 845--867
[9] Colton D, Kirsch A. Dense sets and far field patterns for the transmission problem, in Classical scattering. (Roach G F, ed.), Appl Math Anal, 1984: 45--54
[10] Colton D, Kress R. Inverse Acoustic and Electromagnetic Scattering Theorey (2nd Edition). New York: Springer-Verlag, 1998
[11] Colton D, Monk P. The inverse scattering problem for acoustic waves in an inhomogeneous medium. Quart J Mech Appl Math, 1988, 41: 97--125
[12] Colton D, Kirsch A, P\"{a}iv\"{a}rinta L. Far field patterns for acoustic waves in an inhomogeneous medium. SIAM J
Appl Math, 1989, 20: 1472--1483
[13] P\"{a}iv\"{a}rinta L, Sylvester J. Transmission eigenvalues. SIAM J Math Anal, 2008, 40: 738--753
[14] kirsch A. On the existence of transmission eigenvalues. Inverse Probl Imaging, 2009, 3(2): 155--172
[15] Cakoni F, Haddar H. On the existence of transmission eigenvalues in an inhomogeneous medium. Appl Anal, 2009, 88(4): 475--493
[16] Cakoni F, Colton D, Haddar H. The interior transmission problem for regions with cavities. SIAM J Math Anal, 2010, 42: 145--162
[17] Cakoni F, Gintides D, Haddar H. The existence of an infinite discrete set of transmission eigenvalues. SIAM J Math Anal, 2010, 42: 237--255
[18] Cakoni F, Gintides D. New results on transmission eigenvalues. Inverse Probl Imaging, 2010, 4: 39--48
[19] Colton D, Potthast R. The inverse electromagnetic scattering problem for an anisotropic medium. J Mech Appl Math,
1999, 52: 349--372
[20] kirsch A. The denseness of the far field patterns for the transmission problem. IMA J Appl Math, 1986, 37: 213--225
[21] kirsch A. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Probl Imaging, 2007, 1(1): 107--127
[22] kirsch A. The factorization method for Maxwell's equations. Inverse Probl, 2004, 20: 117--134
[23] Cakoni F, Haddar H. A variational approach for the solution of the electromagnetic interior transmisson problem for
anisotropic media. Inverse Probl Imaging, 2007, 1(3): 443--456
[24] Buffa A, Houston P, Perugia I. Discontinuous Galerkin computation of the Maxwell eigenvalues on simplicial meshes. J Comput Appl Math, 2007, 204: 317--333 |