[1] Fujita H. On the blowing up of solutions of the Cauchy problem for ut=Δu+u1+α. J Fac Sci Univ Tokyo (Sec A), 1966, 16: 105--113
[2] Levine H A. The role of critical exponents in blow-up theorems. SIAM Rev, 1990, 32: 262--288
[3] Deng K, Levine H A. The role of critical exponents in blow-up theorems: the sequel. J Math Anal Appl, 2000, 243: 85--126
[4] Galaktionov V A. Conditions for global nonexistence and localization for a class of nonlinear parabolic equations. Comput Math Math Phys, 1983, 23: 35--44
[5] Galaktionov V A, Kurdyumov S P, Mikhailov A P, Samarskii A A. Blowup in Quasilinear Parabolic Equations. De Gruyter Expositions in Mathematics, Berlin: Springer, 1995
[6] Galaktionov V A, Levine H A. A general approach to critical Fujita exponents and systems. Nonlinear Anal, 1998, 34: 1005--1027
[7] Qi Y W. Critical exponents of degenerate parabolic equations. Scien China (Ser A), 1995, 38: 1153--1162
[8] Qi Y W. The critical exponents of parabolic equations and blow-up in RN. Proc Roy Soc Edinburgh (Sect A), 1998, 128: 123--136
[9] Qi Y W, Levine H A. The critical exponent of degenerate parabolic systems. Z Angew Math Phys, 1993, 44: 249--265
[10] Qi Y W. The global existence and nonuniqueness of a nonlinear degenerate equation. Nonlinear Anal, 1998, 31: 117--136
[11] Qi Y W, Wang M X. Critical exponents of quasilinear parabolic equations. J Math Anal Appl, 2002, 267: 264--280
[12] Pinsky R G. Existence and nonexistence of global solutions for ut=Δu+a(x)up in Rd. J Differential Equations, 1997, 133: 152--177
[13] Suzuki R. Existence and nonexistence of global solutions of quasilinear parabolic equations. J Math Soc Japan, 2002, 54: 747--792
[14] Wang C P, Zheng S N. Critical Fujita exponents of degenerate and singular parabolic equations. Proc R Soc Edinburgh (Sect A), 2006, 136: 415--430
[15] Wang C P, Zheng S N, Wang Z J. Critical Fujita exponents for a class of quasilinear equations with homogeneous Neumann boundary data. Nonlinearity, 2007, 20: 1343--1359
[16] Li Z P, Mu C L. Critical exponents for a fast diffusive polytropic filtration equation with nonlinear boundary flux. J Math Anal Appl, 2008, 346: 55--64
[17] Li Z P, Mu C L, Cui Z J. Critical curves for a fast diffusive polytropic filtration system coupled via nonlinear boundary flux. Z Angew Math Phys, 2008, 60: 284--298
[18] Mu C L, Li Y H, Wang Y. Life span and a new critical exponent for a quasilinear degenerate parabolic equation with slow decay initial values. Nonlinear Anal, 2010, 11: 198--206
[19] Li Y H, Mu C L. Life span and a new critical exponent for a degenerate parabolic equation. J Differential Equations, 2004, 207: 392--406
[20] 李中平, 徐思, 杜宛娟. 快速扩散方程的第二临界指标及解的生命跨度. 数学物理学报, 2012, 32: 904--913
[21] Mukai K, Mochizuki K, Huang Q. Large time behavior and life span for a quasilinear parabolic equation with slowly decaying initial values. Nonlinear Anal, 2000, 39: 33--45
[22] Huang Q, Mochizuki K, Mukai K. Life span and asymptotic behavior for a semilinear parabolic system with slowly decaying initial values. Hokkaido Math J, 1998, 27: 393--407
[23] Lee T Y, Ni W M. Global existence, large time behavior and life span on solutions of a semilinear Cauchy problem. Trans Amer Math Soc, 1992, 333: 365--378
[24] Kamin S, Vazquez J L. Fundamental solution and asymptotic behavior for the p-Laplacian equation. Rev Mat
Iberoamericana, 1988, 4: 339--354
[25] DiBenedetto E, Herrero M A. On the Cauchy problem and initial traces for a degenerate parabolic equation. Trans Amer Math Soc, 1989, 314: 187--224
[26] Zhao J N. The asymptotic behavior of solutions of a quasilinear degenerate parabolic equation. J Differential Equations, 1993, 102: 33--52
[27] Zhao J N. On the Cauchy problem and initial traces for the evolution p-equation with strongly nonlinear sources. J Differential Equations, 1995, 121: 329--383
[28] DiBenedetto E, Friedman A. H\"{o}lder estimates for nonlinear degenerate parabolic system. J Reine Angew Math, 1985, 357: 1--22 |