[1] Cohen M A, Grossberg S. Absolute stability and globle pattern formation and parallel memory storage by competitive neural networks. IEEE Trans on Syst Man and Cybern, 1983, 13(5): 815--826
[2] Li Y K, Fan X L. Existence and globally exponential stability of almost periodic solution for Cohen-Grossberg BAM neural networks with variable coefficients. Appl Math Model, 2009, 33(4): 2114--2120
[3] 张丽娟. !Existence and global attractivity of almost periodic solution for BAM neural networks with variable coefficients and delays. 生物数学学报, 2007, 22(3): 403--412
[4] Xiang H J, Cao J D. Almost periodic solution of Cohen-Grossberg neural networks with bounded and unbounded delays. Nonlinear Anal-Real, 2009, 10(4): 2407--2419
[5] Chen Z, Ruan J. Global stability analysis of impulsive Cohen-Grossberg neural networks with delay. Phys Lett A,
2005, 345(1--3): 101--111
[6] Rakkiyappan R, Balasubramaniam P, Cao J D. Global exponential stability results for neutral-type impulsive neural networks. Real World Appl, 2010, 11(1): 122--130
[7] Li K L, Zeng H L. Stability in impulsive Cohen-Grossberg-type BAM neural networks with time-varying delays: a general analysis. Math Comput Simulat, 2010, 80(3): 2329--2349
[8] Li K L. Delay-dependent stability analysis for impulsive BAM neural networks with time-varying delays. Comput Math Appl, 2008, 56(8): 2088--2099
[9] Zhou Q H, Wan L. Impulsive effects on stability of Cohen-Grossberg-type bidirectional associative memory neural networks with delays. Nonlinear Anal-Real, 2009, 10(4): 2531--2540
[10] Li Y T, Yang C B. Global exponential stability analysis on impulsive BAM neural networks with distributed delays. J Math Anal Appl, 2006, 324(2): 1125--1139
[11] Zhao H Y, Ding N. Dynamic analysis of stochastic bidirectional sociative memory neural networks with delays. Chaos Solit Fract, 2007, 32(5): 1692--1702
[12] Zhao H Y, Ding N. Dynamic analysis of stochastic Cohen-Grossberg neural networks with time delays. Appl Math Comput, 2006, 183(1): 464--470
[13] Hu J, Zhong S M, Liang L. Exponential stability analysis of stochastic delayed cellular neural network. Chaos Solit Fract, 2006, 27(4): 1006--1010
[14] Zhou Q H, Wan L. Exponential stability of stochastic delayed Hopfield neural networks. Appl Math Comput, 2008, 199(1): 84--89
[15] Huang C X, Cao J D. On $P$th moment exponential stability of stochastic Cohen-Grossberg neural networks with time-varying delays. Neurocomputing, 2010, 73(4--6): 986--990
[16] Zhu E W, Zhang H M, Wang Y, et al. Pth moment exponential stability of stochastic Cohen-Grossberg neural networks with time-varying delays. Neural Process Lett, 2007, 26(3): 191--200
[17] Huang C X, He Y G, Chen P. Dynamic analysis of stochastic recurrent neural networks. Neural Process Lett, 2008, 27(3): 267--276
[18] Song Q K, Wang Z D. Stability analysis of impulsive stochastic Cohen-Grossberg neural networks with mixed time delays. Physica A, 2008, 387(13): 3314--3326
[19] Lu J X, Duan X B, Fu R. The p-moment stability for stochastic hopfield-type neural networks with impulses. Chinese J Engineering Mathematics, 2010, 27(4): 741--746
[20] Huang C X, He Y G, Wang H N. Mean square exponential stability of stochastic recurrent neural networks with time-varying delays. Comput Math Appl, 2008, 56(7): 1773--1778
[21] 胡适耕, 黄乘明, 吴付科. 随机微分方程. 北京: 科学出版社, 2008
[22] Zhang C L, Yang F J, Hu X J. Global exponential stability of BAM neural networks with varying coefficient impulses. J Biomathematics, 2007, 22(3): 395--402
[23] Xia Y H, Huang Z K, Han M A. Exponential p-stability of delayed Cohen-Grossberg-type BAM neural networks with impulses. Chaos Soliton Fract, 2008, 38(3): 806--818
[24] Lou X Y, Cui B T. Global asymptotic stability of delay BAM neural networks with impulses based on matrix theory. Appl Math Model, 2008, 32(2): 232--239
[25] Wen Z, Sun J T. Global asymptotic stability of delay BAM neural networks with impulses via nonsmooth analysis. Neurocomputing, 2008, 71(7--9): 1543--1549
[26] Ahmad Shair, Stamova Ivanka M. Global exponential stability for impulsive cellular neural networks with time-varying delays. Nonlinear Anal-Theo, 2008, 69(3): 786--795
[27] Xia Y H, Wong Patricia J Y. Global exponential stability of a class of retarded impulsive differential equations with applications. Chaos Soliton Fract, 2009, 39(1): 440--453
[28] Yang F J, Zhang C L, Wu D Q. Global stability analysis of impulsive BAM type Cohen-Grossberg neural networks with delays. Appl Math Comput, 2007, 186(1): 932--940
[29] Bai C Z. Stability analysis of Cohen-Grossberg BAM neural networks with delays and impulses. Chaos Soliton Fract, 2008, 35(2): 263--267
[30] Xia Y H, Huang Z K, Han M A. Existence and globally exponential stability of equilibrium for BAM neural networks with impulses. Chaos Soliton Fract, 2008, 37(2): 588--597
[31] Huang Z K, Xia Y H. Global exponential stability of BAM neural networks with transmission delays and nonlinear impulses. Chaos Soliton Fract, 2008, 38(2): 489--498 |