[1] Box G E P, Hunter J S. 2k-p fractional factorial designs. Thchnometrics, 1961, 3: 311--351; 449--458
[2] Box G E P, Hunter W G, Hunter J S. Statistics for Experiments. New York: Wiley, 1978
[3] Montgomery D C. Design and Analysis of Experiments (5th ed). New York: Wiley, 2001
[4] Neter J, Kutner M H, Nachtsheim C J, Wasserman, W. Applied Linear Statistical Models (4th ed). Chicago: Richard D Irwin, 1996
[5] Wu C F J, Hamada M S. Experiments Planning Analysis, and Parameter Design Optimization. New York: Wiley, 2000
[6] Montgomery D C, Runger G C. Foldovers of 2k-p resolution IV experimental designs. J Qual Technol, 1996, 28: 446--450
[7] Li W, Lin D K J. Optimal foldover plans for two-level fractional factorial designs. Technometrics, 2003, 45: 142--149
[8] Li W, Lin D K J, Ye K Q. Optimal foldover plans for two-level nonregular orthogonal designs. Technometrics, 2003, 45: 347--351
[9] Fang K T, Lin D K J, Qin H. A note on optimal foldover design. Statist Probab Lett, 2003, 62: 245--250
[10] Ye K, Li W. Some properties for blocked and unblocked foldovers of 2k-p designs. Statist Sinica, 2003, 13: 403--408
[11] Ai M Y, Hickernell F J. Optimal foldover plans for regular s-level fractional factorial designs. Statist Probab Lett, 2008, 78: 896--903
[12] Ai M Y, Xu X, Wu C F J. Optimal blocking and foldover plans for regular two-level dedigns. Statistica Sinica, 2010, 20(1): 183--207
[13] 雷轶菊, 欧祖军, 覃红. (sr)×sn正规 部分因子设计折叠反转的性质. 数学物理学报, 2011, 31A(4): 978--982
[14] Sitter R R, Chen J, Feder M. Fractional resolution and minimum aberration in blocked 2n-k designs. Technometrics, 1997, 39: 382--390
[15] Chen H, Cheng C S. Theory of optimal blocking of 2n-m designs. Ann Statist, 1999, 27: 1948--1973
[16] Zhang R, Park D K. Optimal blocking of two-level fractional factorial designs. J Statist Plan Inference, 2000, 91: 107--121
[17] Cheng S W, Wu C F J. Choice of optimal blocking schemes in two-level and three-level designs. Technometrics, 2002, 44: 269--277
[18] Ai M Y, Zhang R C. Theory of minimum aberration blocked regular mixed factorial designs. J Statist Plann Inference, 2004a, 126: 305--323
[19] Ai M Y, Zhang R C. Theory of optimal blocking of nonregular factorial designs. Canad J Statist, 2004b, 32(1): 57--72 |