[1] Chate H, Courbage M. Lattice systems. Physica D, 1997, 103: 1--612
[2] Chow S N. Lattice Dynamical Systems. Lecture Notes in Math, 1822. Berlin: Springer, 2003
[3] Keener J P. Propagation and its failure in coupled systems of discrete excitable cells. SIAM J Appl Math, 1987, 47: 556--572
[4] Erneux T, Nicolis G. Propagating waves in discrete bistable reaction diffusion systems. Physica D, 1993, 67: 237--244
[5] Kapval R. Discrete models for chemically reacting systems. J Math Chem, 1991, 6: 113--163
[6] Chow S N, Mallet-Paret J. Pattern formation and spatial chaos in lattice dynamical systems. IEEE Trans Circuits Syst, 1995, 42: 746--751
[7] Fabiny L, Colet P, Roy R. Coherence and phase dynamics of spatially coupled solid-state lasers. Phys Rev A, 1993, 47: 4287--4296
[8] Hillert M. A solid-solution model for inhomogeneous systems. Acta Metall, 1961, 9: 525--535
[9] Chua L O, Roska T. The CNN paradigm. IEEE Trans Circuits Systems, 1993, 40: 147--156
[10] Chua L O, Yang Y. Cellular neural networks: theory. IEEE Trans Circuits Syst, 1988, 35: 1257--1272
[11] Chow S N, Mallet-Paret J, Van Vleck E S. Pattern formation and spatial chaos in spatially discrete evolution equations. Rand Compu Dyna, 1996, 4: 109--178
[12] Bates P W, Lu K, Wang B. Attractors for lattice dynamical systems. Inter J Bifur Choas, 2001, 11(1): 143--153
[13] Wang B. Dynamics of systems on infinite lattices. J Differential Equations, 2006, 221: 224--245
[14] Zhou S. Attractors for lattice systems corresponding to evolution equations. Nonlinearity, 2002, 15: 1079--1095
[15] Zhou S. Attractors for second order lattice dynamical systems. J Differential Equations, 2002, 179: 605--624
[16] Zhou S. Attractors for first order dissipative lattice dynamical systems. Physica D, 2003, 178: 51--61
[17] Zhou S. Attractors and approximations for lattice dynamical systems. J Differential Equations, 2004, 200: 342--368
[18] Zhou S, Shi W. Attractors and dimension of dissipative lattice systems. J Differential Equations, 2006, 224: 172--204
[19] Wang B. Asymptotic behavior of non-autonomous lattice systems. J Math Anal Appl, 2007, 331: 121--136
[20] Zhao X, Zhou S. Kernel sections for processes and nonautonomous lattice systems. Disc Cont Dyna Syst (B), 2008, 9: 763--785
[21] Zhao C, Zhou S. Compact kernel sections for nonautonomous Klein-Gordon-Schr\"odinger equations on infinite lattices. J Math Anal Appl, 2007, 332: 32--56
[22] Zhou S, Zhao C. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Comm Pure Appl Math, 2007, 21: 1087--1111
[23] Bate P W, Lisei H, Lu K. Attractors for stochastic lattice dynamical systems. Stoc Dyna, 2006, 6: 1--21
[24] Lv Y, Sun J H. Dynamical behavior for stochastic lattice systems. Chaos, Solitons & Fractals, 2006, 27: 1080--1090
[25] Zhao C, Zhou S. Sufficient conditions for the existence of global random attractors for stochastic lattice dynamical systems and applications.
J Math Anal Appl, 2009, 354: 78--95
[26] Han X, Shen W, Zhou S. Random attractors for stochastic lattice dynamical systems in weighted spaces. J Differential Equations, 2011, 250: 1235--1266
[27] Wang X, Li S, Xu D. Random attractors for second-order stochastic lattice dynamical systems. Nonl Analysis (Theory, Methods \& Applications),
2010, 72: 483--494
[28] Ahmed Y. Abdallah exponential attractors for first-order lattice dynamical systems. J Math Anal Appl, 2008, 339: 217--224
[29] Ahmed Y. Abdallah uniform exponential attractors for first order non-autonomous lattice dynamical systems. J Differential Equations, 2011, 251: 1489--1504
[30] Goubet O, Kechiche W. Uniform attractor for non-autonomous nonlinear Schr\"odinger equation. Comm Pure Appl Math, 2011, 10: 639--651
[31] Chepyzhov V V, Vishik M I. Attractors for Equations of Mathematical Physics. AMS Colloquium Publications, 49. Providence, RI: AMS, 2002
[32] Lorentz G, Golistschek M, Makovoz Y. Constructive Approximation, Advanced Problem. Funct Principles of Math Sciences. Berlin: Springer-Verlag, 1996 |