[1] Janous W. A note on generalized Heronian mean. Math Inequal Appl, 2001, 3: 369--375
[2] Seiffert H J. Problem 887. Nieuw Archief voor Wiskunde. 1993, 11: 176--176
[3] Seiffert H J. Aufgabe β16. Die Wurzel, 1995, 29: 221--222
[4] Seiffert H J. Ungleichungen f\"ur einen bestimmten Mittelwert. Nieuw Archief voor Wiskunde, 1995, 13: 195--198
[5] Mao Q J. Dual mean, logatithmic and Heronian dual mean of two positive numbers. J Suzhou Goll Educ, 1999, 16: 82--85
[6] Guan K Z, Zhu H T. The generalized Heronian mean and its applications. Univ Beograd Publ Elektrotehn Fak, 2006, 17: 60--75
[7] Chu Y , Qiu Y F, Wang M K, Wang G D. The optimal convex combination bounds of arithmetic and harmonic means
for the Seiffert's mean. J Inequal Appl, 2010, Article ID 436457, doi: 10.1155/436457, 7 pages
[8] Wang M K, Chu Y M, Qiu Y F. Some comparison inequalities for generalized Muirhead and identric means. J Inequal Appl, 2010, Article ID 295620, 10 pages
[9] Long B Y, Chu Y M. Optimal inequalities for generalized logarithmic, arithmetic and geometric means. J Inequal Appl, 2010, Article ID 806825, 10 pages
[10] Long B Y, Chu Y M. Optimal power mean bounds for the weighted geometric mean of classical means. J Inequal Appl, 2010, Article ID 905679, 6 pages
[11] Xia W F, Chu Y M, Wang G D. The optimal upper and lower power mean bounds for a convex combination of the arithmetic and logarithmic means. Abstr Appl Anal, 2010, Article ID604804, 9 pages
[12] Chu Y M, Long B Y. Best possible inequalities between generalized logarithmic mean and classical means. Abstr Appl Anal, 2010, Article ID 303286, 13 pages
[13] Shi M Y, Chu Y M, Jiang Y P. Optimal inequalities among various means of two arguments. Abstr Appl Anal, 2009, Article ID 694394, 10 pages
[14] Chu Y M, Xia W F. Two sharp inequalities for power mean, geometric mean and harmonic mean. J Inequal Appl, 2009, Article ID 741923, 6 pages
[15] Chu Y M, Xia W F. Inequalities for generalized logarithmic means. J Inequal Appl, 2009, Article ID 763252, 7 pages
[16] Wen J J, Wang W L. The optimization for the inequalities of power means. J Inequal Appl, 2006, Article ID 46782, 25 pages
[17] Hara T, Uchiyama M, Takahasi S E. A refinement of various mean inequalities. J Inequal Appl, 1998, 2: 387--395
[18] Neuman E, S\'andor J. On the Schwab-Borchardt mean II. Math Pannon, 2006, 17: 49--59
[19] Neuman E, S\'andor J. On the Schwab-Borchardt mean. Math Pannon, 2003, 14: 253--266
[20] Neuman E, S\'andor J. On certain means of two arguments and their extensions. Int J Math Math Sci, 2003, 16: 981--993
[21] H\"ast\"o P A. A monotonicity property of ratios of symmetric homogeneous means. J Inequal Pure Appl Math, 2002, 3: 1--54
[22] H\"ast\"o P A. Optimal inequalities between Seiffert's mean and power mean. Math Inequal Appl, 2004, 7: 47--53 |