[1] Dai X, Diao Y, Gu Q, Han D. Frame wavelets in subspaces of L2(Rd). Proc Amer Math Soc, 2002, 130: 3259--3267
[2] Zhou F Y, Li Y Z. Multivariate FMRAs and FMRA frame wavelets for reducing subspaces of L2(Rd). Kyoto J Math, 2010, 50: 83--99
[3] Weiss G, Wilson E N. The Mathematical Theory of Wavelets, in: Twentieth Century Harmonic Analysis-A Celebration//J S Byrnes(Ed).
Proceedings of the NATO Advanced Study Institiute. Dordrecht: Kluwer Academic Publishers, 2001: 329--366
[4] Dai X, Diao Y, Gu Q. Subspaces with normalized tight frame wavelets in R. Proc Amer Math Soc, 2002, 130: 1661--1667
[5] Dai X, Diao Y, Gu Q, Han D. The existence of subspace wavelet sets. J Comput Appl Math, 2003, 155: 83--90
[6] Lian Q F, Li Y Z. Reducing subspace frame multiresolution analysis and frame wavelets. Commun Pure Appl Anal, 2007, 6: 741--756
[7] Gu Q, Han D. Wavelet frames for (not necessarily reducing) affine subspaces. Appl Comput Harmon Anal, 2009, 27: 47--54
[8] Christensen O. An Introduction to Frames and Riesz Bases. Boston: Birkhäuser, 2003
[9] 李云章, 周凤英. L2(Rd)中约化子空间上的仿射与伪仿射对偶小波标架. 数学学报, 2010, 53: 551--562
\REF{[10]} de Boor C, DeVore R, Ron A. Approximation from
shift-invariant subspaces of $L^{2}({\mathbb {R}}^d)$. Trans Amer Math
Soc, 1994, {\bf 341}: 787--806
|