[1] 廖伯瑜. 现代机械动力学及其工程应用. 北京: 机械工业出版社, 2004
[2] 李书, 冯太华, 范绪萁. 一种利用静力试验数据修正有限元模型的方法.应用力学学报, 1995, 12: 52--56
[3] Bai Z J. The solvability conditions for the inverse eigenvalue problem of Hermitian and generalized skew-Hamiltonnian matrices and its approximation. Inverse Probl, 2003, 19: 1185--1194
[4] Xie D X, Zhang Z Z, Liu Z Y. Theory and method for updating the least squares finite element model of symmetric generalized centro-symmetric matrices. J Computational and Applied Math, 2008, 216: 484--497
[5] 袁永新, 戴华. 线性流形上的广义反射矩阵反问题. 数学物理学报, 2009, 29(6): 1547--1560
[6] 孙继广. 实对称矩阵的两类逆特征值问题.计算数学, 1988, 10(3): 282--290
[7] Benner P, Kressner D, Mehrmann V. Skew-Hamiltonian and Hamiltonian Eigenvalue Problems: The-ory, Algorithms and Applications. Proceedings of the Conference on Applied Mathematics and Scientific Computing. Croatia: Springer-Verlag, 2005, 3–39
[8] Stefanovski J, Trenˇcevski K. Antisymmetric Riccati Matrix Equation. In 1st Congress of the Mathemati-cians and Computer Scientists of Macedonia. Skopje: Sojuz Mat Inform Maked, 1999: 83–92
[7] Benner P, Kressner D, Mehrmann V. Skew-Hamiltonian and Hamiltonian Eigenvalue Problems: Theory, Algorithms and Applications.
Proceedings of the Conference on Applied Mathematics and Scientific Computing. Croatia: Springer-Verlag, 2005, 3--39
[8] Stefanovski J, Tren\v{c}evski K. Antisymmetric Riccati Matrix Equation. In 1st Congress of the Mathematicians and Computer Scientists of Macedonia. Skopje: Sojuz Mat Inform Maked, 1999: 83--92
[9] Amodio P, Lavernaro F, Trigiante D. Conservative perturbations of positive definite Hamiltonian matrices. Numer Linear Algebra Appl, 2005, 12: 117--125
[10] Chu E K W, Fan H Y, Lin W W. A Structure-preserving doubling algorithm for continuous-time algebraic Riccati equations. Linear Algebra Appl, 2005, 396: 55--80
[11] Fan K, Hoffman A. Some metric inequalities in the space of matrices. Proc Am Math Soc, 1955, 6: 111--116
[12] Wedin P {\AA}. Perturbation theory for pseudoinverses. BIT, 1973, 13: 217--232 |