[1] Bradley R C. Equivalent Mixing Conditions for Random Fields. Chapel Hill: Technical Report No 336, Center for Stochastic Processes.
Carolina: Univ of North Carolina, 1990
[2] 吴群英, 林亮. φ混合序列的完全收敛性和强收敛性. 工程数学学报, 2004, 21: 75--80
[3] 吴群英. ρ 混合序列的若干收敛性质. 工程数学学报, 2001, 18: 58--64
[4] 吴群英. ρ 混合序列加权和的完全收敛性和强收敛性. 应用数学, 2002, 15: 1--4
[5] 吴群英. 不同分布ρ混合序列的强收敛速度. 数学研究与评论, 2004, 24: 173--179
[6] 邱德华. ρ混合随机变量加权和的收敛性. 数学物理学报, 2011, 31A: 132--141
[7] Pyke R, Root D. On Convergence in r-mean of normalized partial sums. Ann Math Statist, 1968, 32: 379--381
[8] Ord\'{o}\~{n}ez Cabrera M, Volodin A. Mean convergence theorems and weak laws of large numbers for weighted sums of random variables under a condition of weighted integrability. J Math Anal Appl, 2005, 305: 644--658
[9] Sung S H, Lisawadi S, Volodin A. Weak laws of large numbers for arrays under a condition of uniform integrability. J Korean Math Soc, 2008, 45: 289--300
[10] Utev S, Peligrad M. Maximal inequalities and an invariance principle for a class of weakly dependent random variables. J Theor Probab, 2003, 16: 101--115
[11] Pingyan Chen, Ord\'{o}\~{n}ez Cabrera M, Volodin A. L1-convergence for Weighted sums of some dependent random variables. Stoc Anal and Appl, 2010, 28: 928--936 |