[1] Besse C, Claudel J, Degond P, et al. A model hierarchy for ionospheric plasma modeling. Math Models Methods Appl Sci, 2004, 14: 393--415
[2] Chae D, Tadmor E. On the finite time blow-up of the Euler-Poisson equations in R2. Commun Math Sci, 2008, 6: 785--789
[3] Chen G Q, Jerome J W, Wang D H. Compressible Euler-Maxwell equations. Transp Theory Statist Phys, 2000, 29: 311--331
[4] Duan R J. Global smooth flows for the compressible Euler-Maxwell system: relation case. Journal of Hyperbolic Differential Equations. 2011, 8: 375--413
[5] Deng Y, Liu T P, Yang T, Yao Z A. Solutions of Euler-Poisson equations for gaseous stars. Arch Ration Mech Anal, 2002, 164: 261--285
[6] Guo Y. Smooth irrotational flows in the large to the Euler-Poisson system in R3+1. Comm Math Phys, 1998, 195: 249--265
[7] Guo Y, Pausader B. {Global smooth ion dynamics in the Euler-Poisson system}. Comm Math Phys, 2011, 303: 89--125
[8] Jerome J W. {The Cauchy problem for compressible hydrodynamic-Maxwell systems: a local theory for smooth solutions}. Differential Integral Equations, 2003, 16: 1345--1368
[9] Kato T. {The Cauchy problem for quasi-linear symmetric hyperbolic systems}. Arch Rational Mech Anal, 1975, 58: 181--205
[10] Luo T, Natalini R, Xin Z P. Large time behavior of the solutions to a hydrodynamic model for semiconductors. SIAM J Appl Math, 1999, 59: 810--830
[11] Luo T, Smoller J. {Existence and non-linear stability of rotating star solutions of the compressible Euler-Poisson equations}. Arch
Ration Mech Anal, 2009, 191: 447--496
[12] Markowich P A, Ringhofer C, Schmeiser C. {Semiconductor Equations}. Vienna, New York: Springer, 1990
[13] Peng Y J, Wang S. {Convergence of compressible Euler-Maxwell equations to compressible Euler-Poisson equations}. Chinese Ann
Math (Ser B), 2007, 28: 583--602
[14] Peng Y J, Wang S. Convergence of compressible Euler-Maxwell equations to incompressible Euler equations. Comm Partial Differential Equations, 2008, 33: 349--376
[15] Rishbeth H, Garriott O K. Introduction to Ionospheric Physics. New York: Academic Press, 1969
[16] Stein E M. Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, Princeton: Princeton University Press, 1970
[17] Taylor M E. Partial Differential Equations, I Basic Theory. New York: Springer, 1996
[18] Wang S, Kawashima S. Large global existence and asymptotic decay of solutions to the Euler-Maxwell system. 2010, preprint
[19] Villani C. Hypocoercivity. Memoirs Amer Math Soc, 2009, 202(95): 1--141
[20] Wang S. {Quasineutral limit of Euler-Poisson system with and without viscosity}. Comm Part Diff Eqs, 2004, 29: 419--456
[21] Yang J, Wang S. {The non-relativistic limit of Euler-Maxwell equations for two-fluid plasma}. Nonlinear Anal, 2009, 72: 1829--1840
[22] Yang J, Wang S. Convergence of the nonisentropic Euler-Maxwell equations to compressible Euler-Poisson equations. J Math Phys, 2009, 50 |