[1] Fussteiner B. Coupling of Completely Integrable Systems: the Perturbation Bundle//Clarkson P A, ed. Applications of Analytic and Geometric Methods to Nonlinear Differential Equations. Dordrecht: Kluwer; 1993: 125
[2] Ma W X, Fuchssteiner B. Integrable theory of the perturbation equations. Chaos Solitons and Fractals, 1996, 7: 1227--1250
[3] Ma W X. Enlarging spectral problems to construct integrable couplings of soliton equations. Phys Lett A, 2003, 316: 72--76
[4] Zhang Y F, Zhang H Q. A direct method for integrable couplings of TD hierarchy. J Math Phys, 2002, 43(1): 466--472
[5] Xia T C, You F C, Chen D Y. A generalized cubic Volterra lattice hierarchy and its integrable couplings system. Chaos Solitons and Fractals, 2006, 27: 153--158
[6] Xia T C, You F C, Chen D Y. A generalized AKNS hierarchy and its bi-Hamiltonian structures. Chaos Solitons and Fractals, 2005, 23: 1911--1919
[7] Xia T C, You F C. A generalized MKdV hierarchy, tri-Hamiltonian structure, higher-order binary constrained flows and its integrable couplings system. Chaos Solitons and Fractals, 2006, 28: 938--948
[8] Tu G Z. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable system. J Math Phys, 1989, 30: 330--338
[9] Guo F K, Zhang Y F. The quadratic-form identity for constructing the Hamiltonian structure of integrable systems. J Phys A: Math Gen, 2005, 38: 8537--8548
[10] Ma W X. A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction. Chin J Cont Math, 1992, 13(1): 115--123
[11] Ma W X, Chen M. Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebras. J Phys A: Gen Math, 2006, 39: 10787--10801
[12] Ma W X. Soliton, Positon and Negaton solutions to a Schr\"{o}dinger self-consistent sources.J Phys Soc Jpn, 2003, 72: 3017--3019
[13] Ma W X. Complexion solutions of the Korteweg-de Vries equation with self-consistent sources. Chaos, Solitions and Fractals, 2005, 26: 1453--1458
[14] Zeng Y B, Ma W X, Lin R L. Integration of the soliton hierarchy with self-consistent sources. J Math Phys, 2000, 41: 5453--5489
[15] Yu F J, Li L. An integrable couplings system of JM equation hierarchy with self-consistent sources. Commun Theor Phys, 2010, 53: 6
[16] Zhang Y F, Guo F K. Matrix Lie algebras and integrable couplings. Commun Theor Phys (Beijing, China), 2006, 46: 812--818
[17] Tu G Z. An extension of a theorem on gradients of conserved densities of integrable systems. Northeastern Math J, 1990, 6(1): 26 |