[1] Rockafeller R T. Extension of subgradient calculas with application to optimization. Nonlinear Analysis Theory and Application, 1985, 9(7): 665--698
[2] Clarke F H. Optimization and Nonsmooth Analysis. New York: Wiley-Interscience, 1983
[3] Papagergiou N S. Nonsmooth analysis on partially ordered vector space part l-non convex cas. Pacific J Math, 1983, 107(2): 403--458
[4] 盛宝怀, 刘三阳.用广义梯度刻画集值优化Benson真有效解. 应用数学学报,2002, 25(1): 22--28
[5] 侯震梅, 周勇.集值映射的广义梯度与超有效解. 吉林大学学报(理学版), 2006, 44(1): 9--14
[6]} Taa A. Subdifferentials of multifunctions and lagrange multipliers for multiobjective optimization. J Math Anal Appl, 2003, 283: 398--415
[7] Cheng Y H, Fu W T. Strong efficiency in a locally convex space. Mathematical Methods of Operations Research, 1999, 50: 373--384
[8] 徐义红. 集值优化问题强有效解的Kuhn-Tucker最优性条件. 数学研究与评论,2006, 26(2): 354--360
[9] 武育楠, 戎卫东.集值映射向量优化问题的强有效性. 内蒙古大学学报(自然科学版), 1999, 30(4): 415--421
[10] Borwein J M, Zhuang D. Super efficiency in vector optimization. Trans Amer Math Soc, 1993, 338: 105--122
[11] Sach P H. New generalized convexity notion for set-valued maps and application to vector optimization. J Optim Theory Appl, 2005, 125(1): 157--179
[12] 余国林, 刘三阳. 局部凸空间中ic -锥-类凸集值优化问题的超有效性. 数学物理学报, 2008, 28A(4): 679--687 |