[1] Li J Q, Ma Z E, Zhou Y C. Global analysis of SIS epidemic model with a simple vaccination and multiple endemic equilibria.
Acta Mathematica Scientia, 2006, 26B(1): 83--93
[2] Li M, Smith H, Wang L. Global dynamics of an SEIR epidemic model with vertical transmission. SIAM J Appl Math, 2001, 62: 58--69
[3] Jin Z, Ma Z E, Han M A. Global stability of an SIRS epidemic model with delays. Acta Mathematica Scientia, 2006, 26B(2): 291--306
[4] Shulgin B, Stone L, Agur Z. Theoretical examination of pulse vaccination policy in the sir epidemic model. Math Comp Mod, 2000, 31(4/5): 207--215
[5] Nokes D J, Swinton J. The control of childhood viral infection by pulse vaccination. IMA J Math Appl Med Biol, 1995, 12: 29--53
[6] Ramsay M, Gay N, Miller E. The epidemiology of measles in England and Wales: rationale for 1994 national vaccination campaign.
Commun Dis Rep, 1994, 4: 141--146
[7] Sabin A B. Measles, killer of millions in developing countries: strategies of elimination and continuing control. Eur J Epidemiol, 1991, 7: 1--22
[8] Shulgin B, Stone L, Agur Z. Pulse vaccination strategy in the SIR epidemic mode. Bull Math Biol, 1998, 60: 1123--1148
[9] Pei Y Z, Liu S Y, Gao S J, et al. A delayed SEIQR epidemic model with pulse vaccination and the quarantine measure. Computers and Mathematics with Applications, 2009, 58: 135--145
[10] Sattenspiel L, Herring D A. Simulating the effect of quarantine on the spread of the 1918--1919 flu in central Canada. Bull Math Biol, 2003, 65: 1--26
[11] Bainov D D, Simeonov P S. Impulsive Differential Equations: Periodic Solutions and Applications. New York: Longman Scientific and Technical, 1993
[12] Cooke K, Van Den Driessche P. Analysis of an SEIRS epidemic model with two delays. J Math Biol, 1996, 35: 240--260
[13] Kuang Y. Delay Differential Equation with Application in Population Dynamics. New York: Academic Press, 1993: 67--70
[14] Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations. Singapore: World Scientific, 1989
[15] Zhang J, Li J Q, Ma Z E. Global dynamics of an SEIR epidemic model with immigration of different compartments. Acta Mathematica Scientia, 2006, 26B(3): 551--567
[16] Korobeinikov A, Wake G C. Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models. Appl Math Lett, 2002, 15: 955--960
[17] Song X Y, Jiang Y, Wei H M. Analysis of a saturation incidence SVEIRS epidemic model with pulse and two time delays. Appl Math Comp, 2009, 214: 381--390
[18] Wang W, Ruan S. Bifurcations in an epidemic model with constant removal rate of the infectives. J Math Anal Appl, 2004, 291: 774--793
[19] Wei H M, Jiang Y, Song X Y, et al. Global attractivity and permanence of a SVEIR epidemic model with pulse vaccination and time delay.
J Comp Appl Math, 2009, 229: 302--312
[20] Jiang Y, Wei H M, Song X Y, et al. Global attractivity and permanence of a delayed SVEIR epidemic model with pulse vaccination and saturation incidence. Appl Math Comp, 2009, 213: 312--321
[21] Dong L Z, Chen L S, Sun L H. Optimal harvesting policy for inshore-offshore fishery model with impulsive diffusion. Acta Mathematica Scientia, 2007, 27: 405--412
[22] Lu Zhonghua, Gao Shujing, Chen Lansun. Analysis of an SI epidemic model with nonlinear transmission and stage structure. Acta Mathematica Scientia, 2003, 23B(4): 440--446
[23] Xu R, Chen L S, Chaplain M A J. Global asymptotic stability in n-species nonautonomous Lotka-Volterra competitive systems with delays. Acta Mathematica Scientia, 2003, 23: 208--218 |