[1] Bianchi L. Lezioni di Geometria Differenziale. Pisa: Spoerri, 1902
[2] Sterling I, Wente H C. Existence and classification of constant mean curvature multibubbletons of finite and infinite type. Indiana Univ Math J, 1993, 42: 1239--1265
[3] Eisenhart L P. A Treatise on Differential Geometry of Curves and Surfaces. New York: Ginn Company, 1909
[4] Hu H S. Soliton Theory and Differential Geometry. Berlin: Springer-Verlag, 1995: 297--336
[5] Chern S S, Terng C L. An analogue of B\"{o}cklund theorem in affine geometry. Rocky Mountain J Math, 1980, 10: 105--124
[6] Antonowicz M. On the Bianchi-Bäcklund construction for affine minimal surfaces. J Phys A: Math Gen, 1987, 20: 1989--1996
[7] Terng C L. A higher dimension generalizatioin of sine-Gordon equation and its soliton theory. Ann Math, 1980, 111: 491--510
[8] Tenenblat K, Terng C L. B\"{o}cklund theorem for n-dimensional submanifolds of R2n-1. Ann Math, 1980, 111: 477--490
[9] Chen W H, Li H. Weingarten surfaces and sine-Gordon equation. Science in China (Series A), 1997, 40(10): 1028--1035
[10] Tian C, Cao X F. B\"{a}cklund transformations on surfaces aK+bH=c. Chin Ann Math, 1997, 18A: 529--538
[11] Huang Y Z. Bäcklund theorem on constant curvature surfaces in 3-dimensional Minkowski space and its higher dimensional generalization. Acta Math Sinica, 1986, 29: 684--690
[12] Tian C. Bäcklund transformations for surfaces with K=-1 in R2,1. J Geom Phys, 1997, 22: 212--218
[13] Palmer B. Bäcklund transformations for surfaces in Minkowski space. J Math Phys, 1990, 31: 2872--2875
[14] Chern S S. Geometrical interpretation of sinh-Gordon equation. Ann Polon Math, 1980, 39: 74--80
[15] Hu H S. the construction of hyperbolic surfaces in three-dimensional Minkowski space and sinh-Laplace equations. Acta Math Sinica, 1985, 1: 79--86
[16] Hu H S. Darboux transformations between Δα=sinhα and Δα=sinα and the application to pseudo-spherical congruence in R2,1. Letts Math Phys, 1999, 48: 187--195
[17] Tian C, Zhou K H, Tian Y B. Bäcklund transformation on surfaces with constant mean curvature in R2,1. Acta Math Sci, 2003, 23B: 369--376
[18] Inoguchi J -I. Time-like surfaces of constant mean curvature in Minkowski 3-surfaces. Tokyo J Math, 1998, 21: 141--152
[19] Inoguchi J -I. Darboux transformations on time-like constant mean curvature surfaces. J Geom Phys, 1999, 32: 57--78
[20] Cao X F, Tian C. Bäcklund transformations on surfaces with (k1-m)(k2-m) =±l2 in R2,1. J Phys A: Math Gen, 1997, 30: 6009--6020
[21] Chen W H, Li H. Spacelike Weingarten surfaces in R13 and sine-Gordon equation. J Math Analysis and Applications, 1997, 214: 459--474
[22] Buyske S G. Bäcklund transformations of linear Weingarten surfaces in Minkowski three-space. J Math Phys, 1994, 35(9): 4719--4724
[23] Zhou K H, Tian C, Tian Y B. Bäcklund transformation of Weingarten surfeces in R2,1. Advances in Mathematics, 2004, 33: 174--182 |