[1] Isac G, Sehgal V M, Singh S P. An alternate version of a variational inequality. Indian J Math, 1999, 41(1): 25--31
[2] Li J. A lower and upper bounds of a variational inequality. Appl Math Lett, 2000, 13(5): 47--51
[3] Chadli O, Chiang Y, Yao J C. Equilibrium problems with lower and upper bounds. App Math Lett, 2002, 15(3): 327--331
[4] Ding X P. Equilibrium problems with lower and upper bounds in topological spaces. Acta Math Sci, 2005, 25B(4): 658--662
[5] Ding X P. Fixed point theorems on product topological spaces and applications. Positivity, 2004, 8: 315--326
[6] Spanier E H. Algebraic Topology. New York: McGraw-Hill, 1966
[7] Park S H. Coincidence theorems on ω-connected spaces. J Taiwanese Math, 2006, 10(2): 479--495
[8] Park S H. Elements of the KKM theory for generalized convex spaces. Korean J Comput & Appl Math, 2000, 7(1): 1--28
[9] Park S H. Ninety years of Brouwer fixed point theorem. Vietnam J Math, 1999, 27: 187--222
[10] Park S H. New Subclass of Generalized Convex Spaces. Huntington, NY: Nova Sci Publ, 2000
[11] Lassonde M. On the use of KKM mulfunctions in fixed theory and related topics. J Math Anal Appl, 1983, 97(1): 151--201
[12] Hovarth C D. contractibility and generalized convexity. J Math Anal Appl, 1991, 156(2): 341--357
[13] Park S H. Coincidences of composites of u.s.c. maps on H-spaces and applications. J Korean Math Soc, 1995, 32(2): 251--264
[14] Piao Y J. Another form of KKM type theorem and its applications on generalized convex spaces. Appl Math J Chinese Univ, 2006, 21B(2): 207--213
[15] Kim H J, Park S H. Remarks on the KKM property for open-valued multimaps on generalized convex spaces. J Korean Math Soc, 2005, 42(1): 101--110
[16] Park S H. Comments on collectively fixed point in generalized convex spaces. Applied Math Letters, 2005, 18(4): 431--437 |