[1] Bailey P B. Sturm-Liouville eigenvalues via a phase function. SIAM J Appl Math, 1966, 14: 242--249
[2] Bailey P B. SLEIGN: an Eigenvalue-eigenfunction Code for Sturm-Liouville Problems. Livermore, CA: Sandia National Laboratories, 1976
[3] Fulton C T, Pruess S A. Mathematical software for Sturm-Liouville problems. ACM Trans Math Software, 1993, 19: 360--376
[4] Bailey P B, Everitt W N, Zettl A. The SLEIGN2 Sturm-Liouville code. ACM Trans Math Software, 2001, 27: 143--192
[5] Greenberg L, Marletta M. Algorithm 775 the code SLEUTH for solving fourth-order Sturm-Liouville problems. ACM Trans Math Software, 1997, 23: 453--493
[6] Greenberg L, Marletta M. Numerical methods for higher order Sturm-Liouville problems. J Comput Appl Math, 2000, 125: 367--383
[7] 曹之江. 常微分算子. 上海: 上海科学技术出版社, 1987
[8] Naimark M. Linear Differential Operators, Part I. New York: Frederick Ungar, 1967
[9] Weidmann J. Spectral Theory of Ordinary Differential Operators, Lectrue Notes in Mathematics 1258. Berlin, Hedelberg: Springer-Verlag, 1987
[10] 柯尔莫戈洛夫, 佛明. 函数论与泛函分析基础. 北京: 高等教育出版社, 2006
[11] Coddington E A, Levinson N. Theory of Ordinary Differential Equations. New York, London, Toronto: McGraw-Hill, 1955
[12] Hairer E, Norsett S P, Wanner G. Solving Ordinary Differential Equations I. Nonstiff Problems, 2nd ed. Springer Series in Computational Mathematics. Heidelberg: Springer-Verlag, 1993
[13] Cao Z, Sun J, Edmunds D E. On self-adjointness of the product of two second-order differential operators. Acta Mathematica Sinica, 1999, 15: 375--386
[14] 李天然, 陈传淼. 二阶常微初值问题的单步格式. 数学物理学报, 2003, 23A(3): 379--384
[15] 洪世煌, 胡适耕. 高阶常微分方程两点边值问题解的存在唯一性. 数学物理学报, 1999, 19(3): 247--255 |