[1] Hilger S. Analysis on measure chains---a unified approach to continuous and discrete calculus. Results Math, 1990, 18: 18--56
[2] Bohner M, Peterson A. Dynamic Equations on Time Scales: an Introduction with Applications. Boston: Birkh\"{a}user, 2001
[3] Agarwal R P, Bohner M, O'Regan D, Peterson A. Dynamic equations on time scales: a survey. J Comput Appl Math, 2002, 141: 1--26
[4] Bohner M, Peterson A. Advances in Dynamic Equations on Time Scales. Boston: Birkh\"{a}user, 2003
[5] Bohner M. Some oscillation criteria for first order delay dynamic equations. Far East J Appl Math, 2005, 18: 289--304
[6] Zhang B G, Deng X. Oscillation of delay differential equations on time scales. Math Comput Model, 2002, 36:
1307--1318
[7] Zhu Z, Wang Q. Existence of nonoscillatory solutions to neutral dynamic equations on time scales. J Math Anal Appl, 2007, 335: 751--762
[8] 李同兴, 韩振来. 一类具振动系数的二阶中立型差分方程振动性. 济南大学学报(自然科学版), 2009, 23(4): 410--413
[9] 欧柳曼, 朱思铭. 时标动力方程的稳定性分析. 数学物理学报, 2008, 28A(2): 308--319
[10] 陈维松, 韩振来. 几类微分方程解的渐近性. 济南大学学报(自然科学版), 2009, 23(3): 296--298
[11] 赵以阁, 孙书荣. Sturm-Liouville特征值问题. 济南大学学报(自然科学版). 2009, 23(3): 299--301
[12] 曹凤娟, 韩振来. 具偏差变元p-Laplace微分方程周期解存在性. 济南大学学报(自然科学版), 2010, 24(1): 95--98
[13] Erbe L, Peterson A, Saker S H. Oscillation criteria for second-order nonlinear delay dynamic equations. J Math Anal Appl, 2007, 333: 505--522
[14] Grace S R, Agarwal R P, Bohner M, O'Regan D. Oscillation of second-order strongly superlinear and strongly sublinear dynamic equations. Communications in Nonlinear Science and Numerical Simulation, 2009, 14: 3463--3471
[15] Han Z, Sun S, Shi B. Oscillation criteria for a class of second order Emden-Fowler delay dynamic equations on time scales. J Math Anal Appl, 2007, 334: 847--858
[16] \c{S}ahiner Y. Oscillation of second-order delay differential equations on time scales. Nonlinear Analysis, TMA 2005, 63: 1073--1080
[17] Saker S H. Oscillation of nonlinear dynamic equations on time scales. Appl Math Comput, 2004, 148: 81--91
[18] 李同兴, 韩振来. 时间尺度上二阶超线性动力方程振动性. 济南大学学报(自然科学版), 2010, 24(2): 209--211
[19] 王宏洲, 俞元洪. 一阶中立型时滞微分方程的强迫振动. 数学物理学报, 2007, 27A(1): 90--96
[20] 孙一冰, 韩振来, 李同兴. 二阶拟线性中立型动力方程振动准则. 济南大学学报(自然科学版), 2010, 24(3): 308--311
[21] Liu Ailian, Wu Hongwu, Zhu Siming, Ronald M Mathsen. Oscillation for nonautonomous neutral dynamic delay equations on time scales. Acta Mathematica Scientia, 2006, 26B(1): 99--106
[22] 张光荣, 孙书荣. 二阶非线性时滞动力方程的振动性. 济南大学学报(自然科学版), 2010, 24(4): 414--416
[23] Erbe L, Peterson A, Saker S H. Asymptotic behavior of solutions of a third-order nonlinear dynamic equation on time scales. J Comput Appl Math, 2005, 181: 92--102
[24] Erbe L, Peterson A, Saker S H. Hille and Nehari type criteria for third order dynamic equations. J Math Anal Appl, 2007, 329: 112--131
[25] Erbe L, Peterson A, Saker S H. Oscillation and asymptotic behavior a third-order nonlinear dynamic equation. Can Appl Math Q, 2006, 14: 129--147
[26] Erbe L, Hassan T S, Peterson A. Oscillation of third-order functional dynamic equations with mixed
arguments on time scales. J Appl Math Comput, 2010, 34: 353–371
[27] Erbe L, Hassan T S, Peterson A. Oscillation of third order nonlinear functional dynamic equations on time scales. Differ Equ Dyn Syst, 2010, 18: 199--227
[28] Han Z, Li T, Sun S, Cao F. Oscillation criteria for third order nonlinear delay dynamic equations on time scales. Ann Polon Math, 2010, 99: 143--156
[29] Han Z, Li T, Sun S, Zhang C. Oscillation behavior of third-order neutral Emden-Fowler delay dynamic equations on time scales. Adv Diff Eq, 2010, 2010: 1--23
[30] Hassan T S. Oscillation of third order nonlinear delay dynamic equations on time scales. Math Comput Model, 2009, 49: 1573--1586
[31] Li T, Han Z, Sun Y, Zhao Y. Asymptotic behavior of solutions for third-order half-linear delay dynamic equations on time scales. J Appl Math Comput, 2011, 36: 333--346
[32] Li T, Han Z, Sun S, Zhao Y. Oscillation results for third order nonlinear delay dynamic equations on time scales. Bulletin of the Malaysian Mathematical Sciences Society (in press)
[33] Yu Z, Wang Q. Asymptotic behavior of solutions of third-order nonlinear dynamic equations on time scales. J Comput Appl Math, 2009, 225: 531--540
[34] Karpuz B. Unbounded oscillation of higher-order nonlinear delay dynamic equations of neutral type with oscillating coefficients. Electron J Qual Theory Differ Equ, 2009, 34: 1--14
[35] Karpuz B. Asymptotic behaviour of bounded solutions of a class of higher-order neutral dynamic equations. Appl Math Comput, 2009, 215: 2174--2183 |