[1] Lotka A J. Elements of Physical Biology. Baltimore: Williams and Wilkins Company, 1925
[2] Volterra V. Fluctuations in the abundance of a species considered mathematically. Nature, 1926, 118(2972): 558--560
[3] Holling C S. The functional response of predator to prey density and its role in mimicry and population regulation. Mem Entomol Sec Can, 1965, 45: 1--60
[4] Beddington J R. Mutual interference between parasites or predators and its effect on searching efficiency. J Animal Ecol, 1975, 44(1): 331--340
[5] DeAngelis D L, Goldstein R A, O'Neill R V. A model for trophic interaction. Ecology, 1975, 56(4): 881--892
[6] Wollkind J D, Logan J A. Temperature-dependent predator-prey mite ecosystem on apple tree foliage. J Math Biol, 1978, 6(3): 265--283
[7] Wollkind J D, Collings J B, Logan J A. Metastability in a temperature-dependent model system for predator-prey mite outbreak
interactions on fruit trees. Bull Math Biol, 1988, 50(4): 379--409
[8] May R. Stability and Complexity in Model Ecosystems. Princeton: Princeton University Press, 1973
[9] Hsu S B, Huang T W. Global stability for a class of predator-prey systems. SIAM J Appl Math, 1995, 55(3): 763--783
[10] Li Y L, Xiao D M. Bifurcations of a predator-prey system of Holling and Leslie types. Chaos, Solitons and Fractals, 2007, 34(2): 606--620
[11] Liang Z P, Pan H W. Qualitative analysis of a ratio-dependent Holling-Tanner model. J Math Anal Appl, 2007, 334(2): 954--964
[12] Lu Z Q, Liu X. Analysis of a predator-prey model with modified Holling-Tanner functional response and time delay. Nonlinear Anal RWA, 2008, 9(2): 641--650
[13] Song Y L, Yuan S L, Zhang J M. Bifurcation analysis in the delayed Leslie-Gower predator-prey system. Appl Math Modelling, 2009, 33(11): 4049--4061
[14] Aziz-Alaoui M A, Okiye M D. Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes. Appl Math Lett, 2003, 16(7): 1069--1075
[15] Nindjin A F, Aziz-Alaoui M A, Cadivel M. Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay. Nonlinear Anal RWA, 2006, 7(5): 1104--1118
[16] Nie L, Teng Z, Hu L, Peng J. Qualitative analysis of a modified Leslie-Gower and Holling-type II predator-prey model with state
dependent impulsive effects. Nonlinear Anal RWA, 2010, 11(3): 1364--1373
[17] Ruan S G. Turing instability and travelling waves in diffusive plankton models with delayed nutrient recycling. IMA J Appl Math, 1998,
61(1): 15--32
[18] Ruan S G. Diffusion-driven instability in the Gierer-Meinhardt model of morphogenesis. Natur Resource Modeling, 1998, 11(2): 131--142
[19] Malchow H, Petrovskii S V, Venturino E. Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, and Simulation. Boca Raton: Chapman & Hall/CRC, 2008
[20] Ruan S G, Wu J H. Modeling Spatial Spread of Communicable Diseases Involving Animal Hosts. Spatial Ecology. Boca Raton: Chapman & Hall/CRC, 2009
[21] Fagan W F, Bishop J. Trophic interactions during primary succession: Herbivores slow a plant reinvasion at Mount St Helens. Amer Nat, 2000, 155(2): 238--251
[22] Owen M R, Lewis M A. How predation can slow, stop or reverse a prey invasion. Bull Math Biol, 2001, 63(4): 655--684
[23] Chen B, Wang M X. Qualitative analysis for a diffusive predator-prey model. Computer Math Appl, 2008, 55(3): 339--355
[24] Peng R, Wang M X. On multiplicity and stability of positive solutions of a diffusive prey-predator model. J Math Anal Appl, 2006, 316(1): 256--268
[25] Wang M X, Wang X B. Existence, uniqueness and stability of positive steady states to a prey-predator diffusion system. Sci China (Ser A), 2009, 52(5): 1031--1041
[26] Ryu K, Ahn I. Positive solutions for ratio-dependent predator-prey interaction systems. J Differential Equations, 2005, 218(1): 117--135
[27] Ko W, Ryu K. Coexistence states of a predator-prey system with non-monotonic functional response. Nonlinear Anal RWA, 2007, 8(3): 769--786
[28] 陈滨, 王明新. 一类三种群捕食模型的正解. 数学物理学报, 2008, 28A(6): 1256--1266
[29] Du Y H, Lou Y. Some uniqueness and exact multiplicity results for a predator-prey model. Trans Amer Math Soc, 1997, 349(6): 2443--2475
[30] Fan Y H, Li W T. Global asymptotic stability of a ratio-dependent predator-prey system with diffusion. J Comput Appl Math, 2006, 188(2): 205--227
[31] Ko W, Ryu K. Analysis of diffusive two-competing-prey and one-predator systems with Beddington-Deangelis functional response.
Nonlinear Anal, 2009, 71(9): 4185--4202
[32] Nie H, Wu J H. Multiplicity and stability of a predator-prey model with non-monotonic conversion rate. Nonlinear Anal RWA, 2009, 10(1): 154--171
[33] Ryu K, Ahn I. Coexistence theorem of steady states for nonlinear self-cross-diffusion systems with competitive dynamics. J Math Anal Appl, 283(1): 46--65
[34] Wang M X, Wu Q. Positive solutions of a prey-predator model with predator saturation and competition. J Math Anal Appl, 2008, 345(2): 708--718
[35] Yamada Y. Stability of steady states for prey-predator diffusion equations with homogenenous Dirichlet conditions. SIAM J Math Anal, 1990, 21(2): 327--345
[36] Cano-Casanova S. Existence and structure of the set of positive solutions of a general class of sublinear elliptic non-classical
mixed boundary value problems. Nonlinear Anal, 2002, 49(3): 361--430
[37] Cano-Casanova S, L${\rm\acute{o}}$pez-G${\rm\acute{o}}$mez J. Properties of the principal eigenvalues of a general class of non-classical mixed boundary value problems. J Differential Equations, 2002, 178(1): 123--211
[38] Dancer E N. On the indices of fixed points of mappings in cones and applications. J Math Anal Appl, 1983, 91(1): 131--151
[39] Li L G. Coexistence theorems of steady states for predator-prey interacting systems. Trans Amer Math Soc, 1988, 305(1): 143--166
[40] 王明新. 非线性抛物型方程. 北京: 科学出版社, 1997
[41] Ruan W, Feng W. On the fixed point index and multiple steady states of reaction-diffusion systems. Differential Integral Equations, 1975, 8(2): 371--391
[42] Pao C V. Nonlinear Parabolic and Elliptic Equations. New York: Plenum Press, 1992 |