[1] Blahut R E. Hypothesis testing and information theory. IEEE Trans Inform Theory, 1984, 20: 405--415
[2] Chiyonobu T. Hypothesis testing for signal detection problem and large deviations. { Nagoya Math J,} 2003, 162: 187--203
[3] Dembo A, Zeitouni O. { Large Deviation Technique and Applicatons.} New york: Springer, 1998: 43--55
[4] Gao F Q, Jiang H, Wang B B. Moderate deviations for parameter estimators in OU and fractional OU model. Acta Math Sci, 2010, 30B(4): 1125--1133
[5] Gao F Q, Wang B B. Large deviations for parameter estimators in fractional Ornstein-Uhleneck process. J of Math, 2006, 26: 659--612
[6] Gapeev P V, K\"uchler U. On large deviations in testing Ornstein-Uhlenbeck-type models. Stat Infer Stoch Process, 2008, 11: 143--155
[7] Han T S, Kobayashi K. The strong converse theorem in hypothesis testing. IEEE Trans Inform Theory, 1989, 35: 178--180
[8] Kleptsyna M L, Breton A L, Roubaud M C. Statistical analysis of the fractional Ornstein-Uhlenbeck type process. Stat Infer Stoch rocess, 2002, 5: 229--248
[9] Nakagawa K, Kanaya F. On the converse theorem in statistical hypothesis testing for Markov chains. IEEE Trans Inform Theory, 1993, 39: 629--633
[10] Neyman J, Pearson E S. On the problem of the most efficient tests of statistical hypotheses. Phil Trans Roy Soc London, 1933, 231: 289--337
[11] Norros I, Valkeila E, Virtamo J. An elementary approach to a Girsanov formula and other analytical results on fractional Brownian
motions. Bernoulli, 1999, 5: 571--587 |