[1] Chen Q, Zhou Z R. Gap properties of harmonic maps and minimal submanifolds. Arch Math, 2005, 41(1): 59--69
[2] Chern S S, Goldberg S I. On the volume decreasing property of a class of real harmonic mappings. Amer J Math, 1975, 97(1): 133--147
[3] Chern S S, doCarmo M, Kobayashi S. Minimal Submanifolds of a Sphere with Second Fundamental Form of Constant Length. Funct Anal Rel Fields. Berlin, Heidelberg, New York: Springer-Verlag, 1970: 59--75
[4] Eells J, Lemaire L. Selected Topics in Harmonic Maps. New Orleans: Expository Lectures from the CBMS Regional Conference Held at Tulane Univ Dec, 1980: 15--19
[5] Matei A M. Gap phenomenon for p-harmonic maps. Ann Global Anal Geom, 2000, 18: 541--554
[6] Zhou Z R. Quantum phenomenon of the energy density of a harmonic map to a sphere. Acta Math Sci, 2003, 23B(1): 41--45
[7] Bourguignon J P, Lawson Jr H B. Stability and isolation phenomena for Yang-Mills fields. Commun Math Phys, 1981, 79: 189--230 |