[1] Harte R E. Invertibility and Singularity for Bounded Linear Operators. New York: Dekker, 1988
[2] Harte R E. Fredholm, Weyl and Browder theory. Proc Royal Irish Acad, 1985, 85A(2): 151--176
[3] Laursen K B, Neumann M M. An Introduction to Local Spectral Theory. London Mathematical Society Monographs New Series 20. Oxford: Clarendon Press, 2000
[4] Furuta T. Invitation to Linear Operators. London: Taylor and Francis, 2001
[5] Furuta T, Ito M, Yamazaki T. A subclass of paranormal operators including class of log-hyponormal and several related classes. Sci Math, 1998, 1: 389--403
[6] Yuan J, Gao Z. Weyl spectrum of class A(n) and n-paranormal operators. Integr Equ Oper Theory, 2008, 60: 289--298
[7] Shen J, Zuo F, Yang C. On operators satisfying T*|T2|T≥T*|T*|2T. Acta Math Sin, 2010, 11: 2109--2116
[8] Hansen F. An operator inequality. Math Ann, 1980, 246: 249--250
[9] Jeon I H, Kim I H. On operators satisfying T*|T2|T≥T*|T|2T. Linear Algebra Appl, 2006, 418: 854--862
[10] Aiena P, Monsalve O. Operators which do not have the single valued extension property. J Math Anal Appl, 2000, 250: 435--448
[11] Rakocevic V. Approximate point spectrum and commuting compact perturbations. Glasgow Math J, 1986, 28: 193--198 |