数学物理学报 ›› 2011, Vol. 31 ›› Issue (5): 1311-1316.

• 论文 • 上一篇    下一篇

关于满足条件T*|T1+n|2/1+nTT*|T*|2T的一类算子

申俊丽1|左飞2|杨长森2   

  1. 1. 新乡学院数学系 河南新乡 453000;
    2.河南师范大学数学与信息科学学院 河南新乡 453007
  • 收稿日期:2009-07-25 修回日期:2010-10-22 出版日期:2011-10-25 发布日期:2011-10-25
  • 基金资助:

    教育部科技司(208081)资助

On Operators Satisfying T*|T1+n|2/1+nT&ge|T*|T*|2T

 SHEN Jun-Li1, ZUO Fei2, YANG Chang-Sen2   

  1. 1.Department of Mathematics, Xinxiang University, Henan Xinxiang 453000;
    2.College of Mathematics and Information Science, Henan Normal |University, Henan Xinxiang 453007
  • Received:2009-07-25 Revised:2010-10-22 Online:2011-10-25 Published:2011-10-25
  • Supported by:

    教育部科技司(208081)资助

摘要:

设$T\in B(H)$为复Hilbert空间$H$上的一个有界线性算子, 作者引入一类新的算子类---拟-$*$-$A(n)$类算子,并证明这类算子的一些性质,如:
若$T$是拟-$*$-$A(n)$类算子且$\lambda\neq0$, 则它的点谱与联合点谱相等.作为这个结果的应用,证明了若$T$是一个拟-$*$-$A(n)$算子且$N(T)\subseteq N(T^{*})$,则Weyl谱和本质近似点谱的谱映射定理成立.

关键词: 拟-*-A(n)算子, 拟相似, 单值扩展性质, Weyl谱, 本质近似点谱

Abstract:

Let T ∈B(H) be a bounded linear operator on a complex Hilbert space H. In this paper the authors introduce a new class of operator--quasi-*-A(n) and prove some properties of these operators, such as, if T is quasi-*-A(n), then its point spectrum and joint point spectrum are identical. Using these results, the authors also prove that if T or T* is quasi-*-A(n), then the spectral mapping theorem holds for the weyl spectrum and for the essential approximate point spectrum.

Key words: Quasi-*-A(n), Quasisimilarity, Single valued extension property, Weyl spectrum, Essential approximate point spectrum

中图分类号: 

  • 47B20