[1] Abrams P A, Ginzburg L R. The nature of predation: prey dependent, ratio dependent or neither? Trends in Ecology and Evolution, 2000, 15: 337--341
[2] Lotka A J. Elements of Physical Biology. Baltimore: Williams and Wilkins, 1925
[3] Volterra V. Fluctuations in the abundance of species considered mathematically. Nature, 1926, 118: 558--560
[4] Berryman A A. The orgins and evolution of predator-prey theory. Ecology, 1992, 75: 1530--1535
[5] Hassell M P, Varley G C. New inductive population model for insect parasites and its bearing on biological control. Nature, 1969, 223: 1133--1137
[6] Arditi R, Ackakaya H R. Underestimation of mutual interference of predators. Oeclogia, 1990, 83: 358--361
[7] Sutherland W J. Aggregation and the idea free distribution. J Anim Ecol, 1983, 52: 821--828
[8] Schenk D, Bersier L, Bacher S. An experimental test of the nature of predation: neither prey-nor ratio-dependent. J Animal Ecol, 2005, 74: 86--91
[9] Arditi R, Ginzburg L R. Coupling in predator-prey dynamics: ratio dependence. J Theor Biol, 1989, 139: 311--326
[10] Arditi R, Ginzburg H R, Ackakaya L R. Variation in plankton densities among lakes-a case for ratio-dependent pred ation models.
American Naturalist, 1991, 138: 1287--1296
[11] Akhmet M U, Beklioglu M T, Ergence V I, et al. An impulsive ratio-dependent predator-prey system with diffusion. Nonlinear Anal: RWA,
2006, 7: 1255--1267
[12] Hsu S B, Hwang T W, Kuang Y. Global analysis of the Michaelis-Menten type ratio-dependent predator-prey system. J Math Biol, 2001, 42: 489--506
[13] Kuang Y, Beretta E. Global qualitative analysis of a ratio-dependent predator-prey system. J Math Biol, 1998, 36: 389--406
[14] Liu X, Huang L. Permanence and periodic solutions for a diffusive ratio-dependent predor-prey system. Appl Math Modeling, 2009, 33: 683--691
[15] Pang P Y H, Wang M. Qualitative analysis of a ratio-dependent predator-prey with diffusion. Proc Roy Soc Edinburgh Sect A, 2003, 133: 919--942
[16] Xiao D, Ruan S. Globbal dynamics of a ratio-dependent predator-prey system. J Math Biol, 2001, 43: 268--290
[17] Gaines R E, Mawhin J L. Coindience Degree and Non-Linear Differential Equations. Berlin: Springer, 1977
[18] Cantrell R S, Cosner C. Practical persistence in ecological models via comparison methods. Proc Roy Soc Edinburgh Sect A, 1996, 126: 247--272
[19] Cosner C. Variability, vagueness, and comparison methods for ecological models. Bull Math Biol, 1996, 58: 207--246
[20] Bohner M, Fan M, Zhang J. Existence of periodic solutions in predator-prey and competition dynamical systems. Nonlinear Anal: RWA, 2006, 7: 1193--1204
[21] Fan M, Wang K. Dynamics of a nonautonomous predator-prey system with the Bedding-DeAngelis functional response. J Math Anal Appl, 2004, 295: 15--39
[22] Barb\v{a}lat I. Systemes d'equations differential d'oscillations nonlinearies. Rev Roumanine Math Pures Appl, 1959, 4: 267--270
[23] Xie Y, Li X. Almost periodic solutions of single population model with hereditary effects. Appl Math Comput, 2008, 203: 690--697
[24] Jiang D P. The logistica equation and the Lotka-Volterra equation with almost periodic coefficients. Ann Diff Eqns, 1988, 4: 143--157 |