数学物理学报 ›› 2011, Vol. 31 ›› Issue (5): 1282-1289.

• 论文 • 上一篇    下一篇

关于球面空间中Neuberg-Pedoe不等式

杨世国1|钱娣2|潘娟娟2|王文2   

  1. 1.合肥师范学院数学系和教师教育研究中心 合肥 230061|2.安徽大学数学科学学院 合肥 230039
  • 收稿日期:2009-10-22 修回日期:2011-09-07 出版日期:2011-10-25 发布日期:2011-10-25
  • 基金资助:

    国家自然科学基金(60671051)和安徽省高校省级重点项目(KJ2009A45)资助

The Neuberg-Pedoe Inequality in the Spherical Space

 YANG Shi-Guo1, QIAN D2i, PAN Juan-Juan2, WANG Wen2   

  1. 1.Department of Mathematics and Teachers Eduaction Research Center, Hefei Normal University, Hefei 230061;
    2.School of Mathematics Sciences, Anhui University, Hefei 230039
  • Received:2009-10-22 Revised:2011-09-07 Online:2011-10-25 Published:2011-10-25
  • Supported by:

    国家自然科学基金(60671051)和安徽省高校省级重点项目(KJ2009A45)资助

摘要:

该文利用距离几何的理论与方法, 研究了球面空间中涉及两个n维单形的几何不等式问题, 建立了球面型空间中一种形式的Neuberg-Pedoe不等式和一种形式的彭-常不等式.

关键词: 球面空间, 单形, 体积, 外接球半径, 不等式

Abstract:

In this paper, the authors  study the problem about geometric inequalities for two n-dimensional simplexes in the spherical space by the theory and method of distance geometry. The authors establish a form of the Neuberg-Pedoe inequality and a form of the Peng-Chang inequality in the spherical space.

Key words: Spherical space, Simplex, Volume, Circumradius, Inequality

中图分类号: 

  • 51K05