数学物理学报 ›› 2011, Vol. 31 ›› Issue (5): 1273-1281.

• 论文 • 上一篇    下一篇

非局部时滞反应扩散方程行波解的存在性

梁飞1,2, 高洪俊1   

  1. 1.南京师范大学 数学科学学院 南京 210046|2.安徽科技学院 理学院数学系 安徽凤阳 233100
  • 收稿日期:2009-10-20 修回日期:2011-08-20 出版日期:2011-10-25 发布日期:2011-10-25
  • 基金资助:

    国家自然科学基金(10871097)和安徽省高等学校省级优秀人才基金(2011SQRL115)资助

Existence of Travelling Wave Solutions for a Reaction-diffusion Equation with Nonlocal Delay

 LIANG Fei1,2, GAO Hong-Jun1   

  1. 1.Institute of Mathematics, School of Mathematical Science, Nanjing Normal University, Nanjing 210046;
    2.Department of Mathematics, An Hui Science &|Technology University, Anhui Fengyang |233100
  • Received:2009-10-20 Revised:2011-08-20 Online:2011-10-25 Published:2011-10-25
  • Supported by:

    国家自然科学基金(10871097)和安徽省高等学校省级优秀人才基金(2011SQRL115)资助

摘要:

该文主要考虑非局部时滞反应扩散方程行波解的存在性. 对于特殊的核函数, 通过线性链技巧和几何奇异扰动理论有机结合, 建立了带有非局部时滞反应扩散方程和对应的不带时滞反应扩散方程行波解存在性之间的自然联系. 得到如果不带时滞反应扩散方程行波解存在, 则在时滞充分小的条件下对应的带时滞反应扩散方程行波解也存在.

关键词: 行波解, 非局部时滞, 几何奇异扰动理论

Abstract:

This paper is concerned with the existence of a reaction-diffusion equation with nonlocal delay. For special kernels, by linear chain trick and geometric singular perturbation theory, the authors consider a natural connection between the existence of travelling wave solutions for the reaction-diffusion equation with nonlocal delay and the existence of travelling wave solutions for the corresponding undelayed reaction-diffusion equation. It is showed that if the corresponding undelayed reaction-diffusion equation has a travelling wave solution, then the reaction-diffusion with nonlocal delay also has a travelling wave solution for any sufficiently small delay.

Key words: Travelling wave solution, Nonlocal delay, Geometric singular perturbation

中图分类号: 

  • 35K57