[1] Giannessi F. Theorems of the Alternative, Quadratic Programs, and Complementarity Problems, Variational Inequalities and Complementarity Problems//Cottle R W, Giannessi F, Lions J L. New York, NY: John Wiley and Sons, 1980: 151--186
[2] Giannessi F, ed. Vector Variational Inequalities and Vector Equilibria: Mathe\-matical Theories. Dordrecht, Netherlands: Kluwer Academic Publishers, 2000
[3] Giannessi F, Maugeri A, Pardalos P M. Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models. Dordrecht, Netherlands: Kluwer Academic Publishers, 2001
[4] G\"{o}pfert A, Tammer C, Riahi H, Z\u{a}linescu C. Variational Methods in Partially Ordered Spaces. New York: Springer-Verlag, 2003
[5] Blum E, Oettli W. From optimization and variational inequalities to equilibrium problems. Mathematics Student, 1994, 63: 123--145
[6] Ansari Q H, Konnov I V, Yao J C. On generalized vector equilibrium problems. Nonlinear Analysis (TMA), 2001, 47: 543--554
[7] Ansari Q H, Flores-Bazan F. Generalized vector quasi-equilibrium problems with applications. Journal of Mathematical Analysis and Applications, 2003, 277: 246--256
[8] Bianchi M, Hadjisavvas N, Schaible S. Vector equilibrium problems with generalized monotone bifunctions. Journal of Optimization Theory and Applications, 1997, 92: 527--542
[9] Chen G Y, Yang X Q, Yu H. A nonlinear scalarization function and generalized quasi-vector equilibrium problem. Journal of Global Optimization, 2005, 32: 451--466
[10] Chiang C, Chadli O, Yao J C. Generalized vector equilibrium problems with trifunctions. Journal of Global Optimization, 2004, 30: 135--154
[11] Gong X H. Strong vector equilibrium problem. Journal of Global Optimization, 2006, 36: 339--349
[12] Li J, Huang N J. Vector F-implicit complementarity problems in Banach spaces. Applied Mathematics Letters, 2006, 19: 464--471
[13] Long X J, Huang N J, Teo K L. Existence and stability of solutions for generalized vector quasi-equilibrium problem. Mathematical and Computer Modelling, 2008, 47: 445--451
[14] Hou S H, Gong X H, Yang X M. Existence and stability of solutions for generalized Ky Fan Inequality problems with trifunctions. Journal of Optimization Theory and Applications, 2010, 146: 387--398
[15] Konnov I V, Yao J C. Existence of solutions for generalized vector equilibrium problems. Journal of Mathematical Analysis and Applications, 1999, 233: 328--335
[16] Siddqi A H, Ansari Q H, Khaliq A. On vector variational inequalities. Journal of Optimization Theory and Applications, 1995, 84: 171--180
[17] Fu J Y. Stampacchia generalized vector quasiequilibrium problems and vector saddle points. Journal of Optimization Theory and Applications, 2006, 128: 605--619
[18] Fu J Y. Generalized vector quasi-equilibrium problems. Mathematical Methods of Operations Research, 2000, 52: 57--64
[19] Lee B S, Firdosh Khan M. Salahuddin vector F-implicit complementarity problems with corresponding variational inequality problems. Applied Mathematics Letters, 2007, 20: 433--438
[20] Lin L J, Yu Z T, Kassay G. Existence of equilibria for monotone multivalued mapping and its application to vectorial equilibria. Journal of Optimization Theory and Applications, 2002, 114: 189--208
[21] Tan N X. On the existence of solutions of quasivariational inclusion problems. Journal of Optimization Theory and Applications, 2004, 123: 619--638
[22] 陈剑尘, 龚循华. 锥凸对称向量拟均衡问题解集的通有稳定性. 数学物理学报, 2010, 30A(4): 1006--1017
[23] Luc D T. Theory of Vector Optimization, Lecture Notes in Economics and Mathematical Systems, Vol 319. New York: Springer-Verlag, 1989
[24] Fan K. A generalization of Tychonoff's fixed point theorem. Mathematische Annalen, 1961, 142: 305--310
[25] Berge C. Topological Spaces. Edinburgh, Lodon: Oliver \& Boyd, 1963
[26] Schaefer H H. Topological Vector Spaces. New York: Springer-Verlag, 1980 |