[1] Bardos C, Lebeau G, Rauch J. Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J Control Optim, 1992, 30: 1024--1065
[2] Fernández-Cara E, Zuazua E. The cost of approximate controllability for heat equations: the linear case. Adv in Diff Eq, 2005, 5: 465--514
[3] Fursikov A, Imanuvilov O. Controllability of Evolution Equations. Lecture Notes Series #34, Research Institute of Mathematics, Global Analysis Research Center. Seoul: Seoul National University, 1996
[4] Imanuvilov O. Controllability of parabolic equations. Sbornik Mathematics, 1995, 186(6): 879--900
[5] Lebeau G, Robbiano L. Contr\'{o}le exact de l'équation de la chaleur. Comm P D E, 1995, 20: 335--356
[6] Li X, Yong J. Optimal Control Theory for Infinite Dimensional Systems. Boston, MA: Birkhäuser, 1995
[7] Micu S, Zuazua E. An Introduction to the Controllability of Partial Differential Equations. Quelques Questions de Théorie du Contr\`{o}le. Paris: Collection Travaux en Cours Hermann, 2004: 69--157
[8] Miller L. Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time. J Diff Eq, 2004, 204: 202--226
[9] Miller L. The control transmutation method and the cost of fast controls. SIAM J Control Optim, 2006, 45: 762--772
[10] Puel J -P. A nonstandard approach to a data assimilation problem. C R Acad Sci Paris (Ser I), 2002, 335: 161--166 |