数学物理学报 ›› 2011, Vol. 31 ›› Issue (2): 320-327.

• 论文 • 上一篇    下一篇

kR-对称矩阵的Procrustes问题及最佳逼近问题

贾志刚1,2|魏木生3|赵美香4   

  1. 1.徐州师范大学数学科学学院 江苏徐州 221116; |2.华东师范大学数学系 上海200241|3.上海师范大学数理学院, 科学计算上海高校重点实验室 上海 200234|4.徐州师范大学科文学院 江苏徐州 221116
  • 收稿日期:2008-05-18 修回日期:2010-01-12 出版日期:2011-04-25 发布日期:2011-04-25
  • 基金资助:

    国家自然科学基金(11001144)、江苏省高校自然科学基金(10KJD110005)和毫米波国家重点实验室开放课题(K201008)资助

Procrustes Problem of Hermitian Degree k R-symmetric Matrix and Its Approximation Problem

 JIA Zhi-Gang1,2, WEI Mu-Sheng3, ZHAO Mei-Xiang4   

  1. 1.School of |Mathematical Sciences, Xuzhou Normal University, Jiangsu Xuzhou 221116;
    2.Department of Mathematics, East China Normal University, Shanghai 200241;
    3.Department of Mathematics, Shanghai Normal University, Scientific Computing|Key Laboratory of Shanghai Universities, Shanghai 200234;
    4.Kewen Institute, Xuzhou Normal University, Jiangsu Xuzhou 221116
  • Received:2008-05-18 Revised:2010-01-12 Online:2011-04-25 Published:2011-04-25
  • Supported by:

    国家自然科学基金(11001144)、江苏省高校自然科学基金(10KJD110005)和毫米波国家重点实验室开放课题(K201008)资助

摘要:

刻画了Hermitian kR -对称矩阵, 并分别给出AX=V和|AX-V|=min存在Hermitian kR-对称解的充要条件和解的精确表达式,  其中X, VCnχm是已知的矩阵. 给定矩阵Cnχn, 该文给出| AX-V|=min和 | A-B|=min存在公共的Hermitian kR -对称解的充要条件和解的表达式.

关键词: k次单位矩阵, Hermitian kR -对称矩阵, Procrustes 问题, 最佳逼近

Abstract:

The class of Hermitian degree k R-symmetric matrices is characterized. Necessary and sufficient conditions and explicit formulations 
 of   Hermitian degree k R-symmetric solutions of | AX-V|=min and AX=V are respectively derived, where X, V in Cnχm are known matrices. For given matrix Cnχn, the unique common Hermitian degree k R-symmetric solution of | AX-V| and | A-B| is obtained.

Key words: k-th unit matrix, Hermitian degree k R-symmetry, Procrustes problem, Approximation

中图分类号: 

  • 15A09