[1] Aris R. Introduction to the Analysis of Chemical Reactors. Englewood Cliffs, NJ: Prentice-Hall, 1965
[2] Castro A, Maya C, Shivaji R. Nonlinear eigenvalue problems with semipositone. Electron J Differ Equ Conf, 2000, 5: 33--49
[3] Anuradha V, Hai D D, Shivaji R. Existence results for superlinear semipositone BVP's. Proc Amer Math Soc, 1996, 124: 757--746
[4] Agarwal R P, O'Regan D. Positive solutions for (p, n-p) conjugate boundary value problems. J Differential Equations, 1998, 150: 462--473
[5] Agarwal R P, Wong F H. Existence of solutions to (k, n-k-2) boundary value problems. Appl Math Comput, 1999, 104: 33--50
[6] Eloe P W, Henderson J. Positive solutions for (n-1, 1) conjugate boundary value problems. Nonlinear Anal, 1997, 28: 1669--1680
[7] Eloe P W, Henderson J. Singular nonlinear (k, n-k) conjugate boundary value problems. J Differential Equations, 1997, 133: 136--151
[8] Guo D J, Lakshmikantham V. Nonlinear Problems in Abstract Cone. New York: Academic Press, Inc, 1988
[9] Kong L J, Wang J Y. The Green's function for (k; n-k) boundary value problems and its application. J Math Anal Appl, 2001, 255: 404--422
[10] Yang X J. Greens function and positive solutions for higher-order ODE. Appl Math Comput, 2003, 136: 379--393
[11] Jiang D Q. Positive solutions to singular (k, n-k) conjugate boundary value problems. Acta Math Sinica, 2001, 3: 541--548
[12] Loud W. Periodic solutions of a perturbed autonomous system. Ann of Math, 1959, 70: 490--529
[13] Xia Y, Huang Z, Han M. Existence of almost periodic solutions for forced perturbed systems with piecewise constant argument. J Math Anal Appl, 2007, 333: 798--816
[14] Khanmamedov A. On the existence of a global attractor for the wave equation with nonlinear strong damping perturbed by nonmonotone term. Nonlinear Anal, 2008, 69: 3372--3385
[15] Llibre J, Wu H, Yu J. Linear estimate for the number of limit cycles of a perturbed cubic polynomial differential system. Nonlinear Anal, 2009, 70: 419--432
[16] Makarenkov O, Nistri P. Periodic solutions for planar autonomous systems with nonsmooth periodic perturbations. J Math Anal Appl, 2008, 338: 1401--1417
[17] Cen Z. A second-order difference scheme for a parameterized singular perturbation problem. J Comput Appl Math, 2008, 221: 174--182 |