[1] Bieliavsky P, Bonneau P, Maeda Y. Universal deformation formulae, symplectic Lie groups and symmetric spaces. Pacific Journal of Mathematics, 2007, 230: 41--58
[2] Bieliavsky P, Bonneau P, Maeda Y. Universal Deformation Formulae for Three-dimensional Solvable Lie Groups. Quantum Field Theory and Noncommutative Geometry. Berlin, New York: Springer, 2005: 127--138
[3] Bonneau P, Gerstenhaber M, Giaquinto A, Sternheimer D. Quantum groups and deformation quantization: explicit approaches and implicit aspects. J Math Phys, 2004, 45: 3703--3741
[4] Bonneau P, Sternheimer D. Topological Hopf Algebras Quantum Groups and Deformation Quantization. Lecture Notes in Pure and appl Math. New York: Marcel Dekker, 2005: 55--70
[5] Bulacu D, Panaite F, Oystaeyen F V. Generalized diagonal crossed products and smash products for quasi-Hopf algebras
applications. Comm Math Phys, 2006, 266: 355--399
[6]} Ferrer Santos W R, Torrecillas B. Twisting products in algebras II. K-Theory, 1999, 17: 37--53
[7] Hausser F, Nill F. Diagonal crossed products by duals of quasi-quantum groups. Rev Math Phys, 1999, 11: 553--629
[8] Kassel C. Quantum Groups. Graduate Texts in Mathematics 155. Berlin: Springer, 1995
[9] Majid S. Foundations of Quantum Group Theory. Cambridge: Cambridge Univ Press, 1995
[10] Montgomery S. Hopf Algebras and Their Actions on Rings. CBMS Lecture Notes. Providence, RI: AMS, 1993
[11] Panaite F, Oystaeyen F V. L-R-smash product for (quasi) Hopf algebras. J Algebra, 2007, 309: 168--191
[12] Sweedler M E. Hopf Algebras. New York: Benjamin, 1969
[13] Wang S H, Li J Q. On twisted smash products for bimodule algebras and the Drinfeld double. Comm Algebra, 1998, 26: 2435--2444
[14] Zhao W Z, Wang S H, Jiao Z M. The twisted coproduct of the Hopf algebra and the HR Hopf algebras. Acta Mathematica Sinica (in Chinese), 1997, 40: 591--596 |