[1] Han J Y, Xiu N H, Qi H D. Nonlinear Omplementary Theory and Algorithm. Shanghai: Shanghai Science and Technology Press, 2006
[2] Qi H, Qi L. A new QP-free, globally convergent, locally superlinearly convergent algorithm for inequality constrained optimization. SIAM J Optim, 2000, 11: 113--132
[3] Ferris M C, Pang J S. Engineering and economic applications of complementarity problems. SIAM Review, 1997, 39: 669--713
[4] Fukushima M. Merit Functions for Variational and Complementarity Problems//Di Pillo G, Giannessi F, eds. Nonlinear Optimization and Applications. New York: Plenum Press, 1996: 155--170
[5] Harker P T, Pang J S. Finite-dimensional variational and nonlinear complementarity problems: a survey of theory, algorithm and applications. Mathematical Programming, 1990, 48: 161--220
[6] Pang J S. Complementarity Problems//Horst R, Pardalos P, eds. Handbook of Global Optimization. Boston: Kluwer Academic Publishers, 1995: 271--338
[7] Facchinei F, Kanzow C. A nonsmooth inexact Newton method for the solution of large nonlinear complementarity problems. Mathematics Programming, 1997, 76: 493--512
[8] Herskovits J N. A two-stage feasible direction algorithm for nonlinear constrained optimization. Math Programming, 1986, 36: 19--38
[9] Herskovits J N. Feasible direction interior-point technique for nonlinear optimization. J Optim Theory Appl, 1998, 99: 121--146
[10] Panier E R, Tits A L, Herskovits J N. A QP-free, globally, locally superlinear convergent method for the inequality constrained optimization problems. SIAM J Control Optim, 1988, 36: 788--811
[11] Sun D. A regularization Newton method for solving nonlinear complementarity problems. Applied Mathematics and Optimization, 1999, 40: 315--339
[12] Urban T, Tits A L, Lawrence C T. A Primal-dual Interior-point Method for Nonvex Optimization with Multiple Logarithmic Barrier
Parameters and with Strong Convergence Properties. Maryland: Department of Electrical Engineering and Institute for Systems Research,
University of Maryland, College Park, 1998
[13] Panier E R, Tits A L. A superlinear convergent feasible method for the solution of inequality constrained optimization problems. SIAM
J Control Optim, 1987, 25: 934--950
[14] Clarke F H. Optimization and Nonsmooth Analysis. Philadelphia: SIAM, 1990
[15] Chen X, Qi L, Yang Y F. Lagrangian globalization methods for nonlinear complementarity problem. Optim Theory Appl, 2002, 112: 77--95
[16] Pu D, Zhang J. An inexact generalized Newton method for second order C-differentiable optimization. J of Computational and Applied Mathematics, 1998, 93: 107--122
[17] Qi L. Convergence analysis of some method for solving nonsmooth equations. Marhematics of Operations Research, 1993, 18: 227--243
[18] Schittkowski K. More Test Examples for Nonlinear Programming Codes. New York: Springer-Verlag, 1988 |