[1] Wang J Y. The subrepresentation theorems of the conjugate cones of complex locally β-convex spaces l β and Lβ [0,1] (in Chinese). Acta Mathematica Sinica, 2005, 48: 1155--1166
[2] Jarchow H. Locally Convex Spaces. Stuttgart: B G Teubner, 1981
[3] Wang J Y, Ma Y M. The second separation theorem in locally $\beta$-convex space and the boundedness theorem in its conjugate cone. J Math Res Exposition, 2002, 22(1): 25--34
[4] Waelbroeck L. Topological Vector Spaces and Algebras. Berlin-Heidelberg-New York: Springer, 1971
[5] Kalton N J, Peck N T, Roberts J W. An F-space Sampler. London: Cambridge University Press, 1984
[6] Rolewicz S. Metric Linear Spaces. Warszawa: PWN, 1985
[7] Day M M. The spaces Lp with 0<p<1. Bull Amer Math Soc, 1940, 46: 816--823
[8] Simmons S. Boundness in linear topological spaces. Trans Amer Math Soc, 1964, 113: 169--180
[9] Wang J Y. The conjugate cones of locally β-convex spaces and the Hahn-Banach theorem (in Chinese). Math Practice Theory, 2002, 32(1): 143--149
[10] Wang J Y. Quasi-translation invariant topological cones and the conjugate cones of locally β-convex spaces (in Chinese). Math Practice Theory, 2003, 33(1): 89--97
[11] Halmos P R. Measure Theory. New York: Van Nostrand, 1950
[12] Bourgin R D. Geometric Aspects of Convex Sets with the Radon-Nikodym Property. New York: Springer-Verlag, 1983
[13] Diestel J. Vector Measure. Providence, RI: American Mathematical Society, 1977 |