数学物理学报 ›› 2010, Vol. 30 ›› Issue (6): 1485-1494.

• 论文 • 上一篇    下一篇

布朗运动可加泛函渐近性的一些新结果

陈传钟1|韩新方2|马丽3   

  1. 1.海南师范大学数学与统计学院 海口 571158;2.中南大学数学科学与计算技术学院 长沙 410075|中科院数学与系统科学研究院应用数学所 |北京 100190;3. Department of Mathematics and Statistics, Concordia University, Montreal H4B1R6, Canada
  • 收稿日期:2008-11-30 修回日期:2009-09-15 出版日期:2010-12-25 发布日期:2010-12-25
  • 基金资助:

    国家自然科学基金(10961012)、海南省自然科学基金(80529)和海南师范大学博士基金资助

Some New Results about Asymptotic Properties of Additive Functionals of Brownian Motion

 CHEN Chuan-Zhong1, HAN Xin-Fang2, MA Li3   

  1. 1.Department of Mathematics and Statistics, Hainan Normal University, Haikou 571158;2.School of Mathematical Science and Computing
    Technology, Central South University, Changsha 410075|Institute of Applied Mathematics, AMSS, CAS, Beijing 100190;3.Department of Mathematics and Statistics, Concordia University, Montreal H4B 1R6, Canada
  • Received:2008-11-30 Revised:2009-09-15 Online:2010-12-25 Published:2010-12-25
  • Supported by:

    国家自然科学基金(10961012)、海南省自然科学基金(80529)和海南师范大学博士基金资助

摘要:

设$\textbf{B=}(\Omega,{{\cal F}},({{\cal F}}_{t})_{t\geq0},(B_{t})_{t\geq0},(P_{x})_{x\inR^{d}})$ 为 $L^{2}(R^{d},m)$上经典的布朗运动, $({{\cal E}},{{\cal D}}({{\cal E}}))$为其联系的对称狄氏型. 设$u\in{{\cal D}}({{\cal E}})$, $\tilde{u}(B_{t})-\tilde{u}(B_{0})=M^{u}_{t}+N^{u}_{t}$为$\tilde{u}(B_{t})$的Fukushima分解. 该文主要研究由上鞅可乘泛函$L^{-u}_{t}:=e^{M^{-u}_{t}-\frac{1}{2}\langle M^{-u}\rangle_{t}}$ 对$(B_{t})_{t\geq0}$进行变换所得到的新过程$(\widehat{B}_{t})_{t\geq0}$ 的一些性质; 同时还研究了由$N^{u}_{t}$产生的布朗运动可加泛函渐近性问题, 并得到了新的结果:  如果 $u$有界, $\nabla u\in K_{d-1}$, 且$L^{-u}_{t}$ 是鞅, $||E_{.}(e^{M^{-u}_{t}})||_{q}<\infty$, 那么对任意的$x\in R^{d}$有
$$
     \lim_{t\rightarrow \infty}\frac{1}{t}
     \log E_{x}(e^{N^{u}_{t}})
     =-\inf_{{f\in {{\cal D}}({\cal E})_{b}}\atop{\|   f \| _{L^{2}(R^{d},m)}=1}}({{\cal E}}(f,f)+{{\cal E}}(f^{2},u)).

关键词: 狄氏型, Fukushima分解, 布朗运动, 转移密度函数, 渐近性

Abstract:

Let $\textbf{B=}(\Omega,{{\cal F}},({{\cal F}}_{t})_{t\geq0},(B_{t})_{t\geq0},(P_{x})_{x\inR^{d}})$ be the classical Brownian motion on $L^{2}(R^{d},m)$, which is associated with a symmetric Dirichlet form $({{\cal E}},{{\cal D}}({{\cal E}}))$. For $u\in{{\cal D}}({{\cal E}})$,  $\tilde{u}(B_{t})-\tilde{u}(B_{0})=M^{u}_{t}+N^{u}_{t}$ is Fukushima decomposition, where $\tilde{u}$ is a quasi-continuous version of $u$, $M^{u}_{t}$ the martingale part and $N^{u}_{t}$  the zero energy part. In this paper, the authors first study transformed process $\widehat{B}$ of B, which is determined by the supermartingale $L^{-u}_{t}:=e^{M^{-u}_{t}-\frac{1}{2}\langle M^{-u}\rangle_{t}}$, they get some properties of its transition semigroup; Then, they study the asymptotic properties of $N^{u}_{t}$, they get that if $L^{-u}_{t}$  is a martingale, $u$ is bounded and
$\nabla u\in K_{d-1}$, $||E_{.}(e^{M^{-u}_{t}})||_{q}<\infty$, then for every $x\in R^{d}$, \begin{eqnarray*} \lim_{t\rightarrow \infty}\frac{1}{t} \log E_{x}(e^{N^{u}_{t}}) =-\inf_{{f\in {{\cal D}}({\cal E})_{b}}\atop{\| f \| _{L^{2}(R^{d},m)}=1}}({{\cal E}}(f,f)+{{\cal E}}(f^{2},u)), \end{eqnarray*} where
 ${{\cal D}}({{\cal E}})_{b}={{\cal D}}({{\cal E}})\cap L^{\infty}(R^{d},m)$.

Key words: Dirichlet form, Fukushima decomposition, Brownian motion, Transition density function Asymptotic property

中图分类号: 

  • 31C25