数学物理学报 ›› 2010, Vol. 30 ›› Issue (6): 1485-1494.

• 论文 • 上一篇    下一篇

布朗运动可加泛函渐近性的一些新结果

陈传钟1|韩新方2|马丽3   

  1. 1.海南师范大学数学与统计学院 海口 571158;2.中南大学数学科学与计算技术学院 长沙 410075|中科院数学与系统科学研究院应用数学所 |北京 100190;3. Department of Mathematics and Statistics, Concordia University, Montreal H4B1R6, Canada
  • 收稿日期:2008-11-30 修回日期:2009-09-15 出版日期:2010-12-25 发布日期:2010-12-25
  • 基金资助:

    国家自然科学基金(10961012)、海南省自然科学基金(80529)和海南师范大学博士基金资助

Some New Results about Asymptotic Properties of Additive Functionals of Brownian Motion

 CHEN Chuan-Zhong1, HAN Xin-Fang2, MA Li3   

  1. 1.Department of Mathematics and Statistics, Hainan Normal University, Haikou 571158;2.School of Mathematical Science and Computing
    Technology, Central South University, Changsha 410075|Institute of Applied Mathematics, AMSS, CAS, Beijing 100190;3.Department of Mathematics and Statistics, Concordia University, Montreal H4B 1R6, Canada
  • Received:2008-11-30 Revised:2009-09-15 Online:2010-12-25 Published:2010-12-25
  • Supported by:

    国家自然科学基金(10961012)、海南省自然科学基金(80529)和海南师范大学博士基金资助

摘要:

B=(Ω,F,(Ft)t0,(Bt)t0,(Px)x\inRd)L2(Rd,m)上经典的布朗运动, (E,D(E))为其联系的对称狄氏型. 设uD(E), u~(Bt)u~(B0)=Mtu+Ntuu~(Bt)的Fukushima分解. 该文主要研究由上鞅可乘泛函Ltu:=eMtu12Mut(Bt)t0进行变换所得到的新过程(B^t)t0 的一些性质; 同时还研究了由Ntu产生的布朗运动可加泛函渐近性问题, 并得到了新的结果:  如果 u有界, uKd1, 且Ltu 是鞅, ||E.(eMtu)||q<, 那么对任意的xRd
$$
     \lim_{t\rightarrow \infty}\frac{1}{t}
     \log E_{x}(e^{N^{u}_{t}})
     =-\inf_{{f\in {{\cal D}}({\cal E})_{b}}\atop{\|   f \| _{L^{2}(R^{d},m)}=1}}({{\cal E}}(f,f)+{{\cal E}}(f^{2},u)).

关键词: 狄氏型, Fukushima分解, 布朗运动, 转移密度函数, 渐近性

Abstract:

Let B=(Ω,F,(Ft)t0,(Bt)t0,(Px)x\inRd) be the classical Brownian motion on L2(Rd,m), which is associated with a symmetric Dirichlet form (E,D(E)). For uD(E)u~(Bt)u~(B0)=Mtu+Ntu is Fukushima decomposition, where u~ is a quasi-continuous version of uMtu the martingale part and Ntu  the zero energy part. In this paper, the authors first study transformed process B^ of B, which is determined by the supermartingale Ltu:=eMtu12Mut, they get some properties of its transition semigroup; Then, they study the asymptotic properties of Ntu, they get that if Ltu  is a martingale, u is bounded and
uKd1, ||E.(eMtu)||q<, then for every xRd

limt1tlogEx(eNtu)=inffD(E)bfL2(Rd,m)=1(E(f,f)+E(f2,u)),
where
 D(E)b=D(E)L(Rd,m).

Key words: Dirichlet form, Fukushima decomposition, Brownian motion, Transition density function Asymptotic property

中图分类号: 

  • 31C25