数学物理学报 ›› 2010, Vol. 30 ›› Issue (6): 1444-1450.

• 论文 • 上一篇    下一篇

一类非线性奇异积分方程的新解法

黄新民   

  1. 广西大学数学与信息科学学院 南宁 530004
  • 收稿日期:2007-11-22 修回日期:2009-05-20 出版日期:2010-12-25 发布日期:2010-12-25

A New Method to Solve a Kind of Nonlinear Singular Integral Equation

 HUANG Xin-Min   

  1. College of Mathematics and Information Science, Guangxi University, Nanning 530004
  • Received:2007-11-22 Revised:2009-05-20 Online:2010-12-25 Published:2010-12-25

摘要:

该文是在文献 [1] 中所讨论内容的进一步扩展. 在Holder 连续空间中求解非线性奇异积分方程
a(t)Φ2(t)+b(t)/πi ∫LΦ(τ)/τ-dτ+c(t)=0,     t ∈L,
式中a(t), b(t), c(t)是多项式并且a(t)b(t) | tL≠0. 复平面被曲线L分成区域S+与开集(也可能是一个区域)S-两个部分, L可以由多条光滑闭曲线组成, 也可以是由一条简单开弧组成, 或者是由一组简单闭曲线与简单弧集组成. 求解方法是在文献[1] 中使用过的, 即将问题变化成 Rimann 边值
问题后求解, 但方法有改进. 

关键词: 非线性积分方程, 带平方根的Riemann 边值问题, 多连通区域, Plemelj 公式

Abstract:

In this paper, the problem discussed in  [1] is extended, that is, the general solution of the nonlinear singular  integral equation
a(t)Φ2(t)+b(t)/πi ∫LΦ(τ)/τ-dτ+c(t)=0,     t ∈L,
is solved in H\"older\ continuous space, where a(t),b(t), c(t) are polynomials and a(t)b(t) ≠0. The complex plane is divided into a region S+ and an open set(or a region)S- by L, L being  a simple closed contour in the complex plane, or a simple arc, or a set of some simple arcs, or a  set of curves consisting of some simple closed contours and simple arcs. A new method is used which is different from that in [1], the problem is transformed to a Riemann boundary value problem, then it is solved.

Key words: Nonlinear integral equation, Riemann boundary value problem with square roots,  , Multiply connected region, Plemelj formula

中图分类号: 

  • 45G05