[1] Comte F. Kernel deconvolution of stochastic volatility models. Journal of Time Series Analysis, 2004, 25: 563--582
[2] Fan J, Yao Q, Cai Zh. Adaptive varing-coefficient linear models. Journal of the Royal Statistical Society, Series B, 2003, 65: 57--80
[3] Hardle W, Tsybakov A. Local polynomial estimators of volatility function in nonparametric autoregression. Journal of Econometrics, 1997, 81: 223--242
[4] Stefanski L A, Carroll R J. Deconvolution-based score tests in measurement error models. Ann Statist, 1991, 19: 249--259
[5] Ango Nze P. Critéres d'ergodicité de quelques modéles à représentation markovienne. Comptes Rendus des Seances de I'Academie des Sciences Paris, 1992, 315: 1301--1304
[6] Nummelin E, Tuominen P. Geometric ergodicity of Harris-recurrent Markov chains with applications to renewed theory. Stochastic Processes and their Applications, 1982, 12: 187--202
[7] Tweedie R L. Sufficient conditions for ergodicity and geometric ergodicity of Markov chains on a general state space. Stochastic Process and their Applications, 1975, 3: 385--403
[8] Tsybakov A B. Robust reconstruction of functions by the local-approximation method. Problems of Information Transmission, 1986, 22: 133--146
[9] Allen D M. The relationship between variable and data augmentation and a method of prediction. Technometrics, 1974, 16: 125--127
[10] Stone M. Cross-validatory choice and assessment of statistical predictions (with disscussion). Journal of the Royal Statistical Society (Series B), 1974, 36: 111--147
[11] Fan J, Truong Y K. Nonparametric regression with errors in variables. Ann Statist, 1993, 21: 1900--1925
[12] Davydov Yu A. Mixing conditions for Markov chains. Theory of Probability and its Applications, 1973, 18: 312--328
[13] Lipster R Sh, Shirjaev A N. A functional central limit theorem for martingales. Theory of Probability and its Applications, 1980, 25: 667--668 |